│ 49
Ayala et al. Hidrólisis enzimática de polvillo de arroz para la producción de etanol de segunda.
https://doi.org/10.1016/j.biortech.2015.05.006
De Queiroz, D. P., Florentino, A. D. O., Bruno, J. C., Da
Silva, J. H. D., Riul, A., & Giacometti, J. A. (2016). The
use of an e-tongue for discriminating ethanol/water
mixtures and determination of their water content.
Sensors and Actuators, B: Chemical, 230, 566-570.
https://doi.org/10.1016/j.snb.2016.02.080
Detns, R. C., Taken, S., Co, F. S., Smith, F., Co, C., &
Titrim-, F. (s. f.). Use of DinitrosaIicyIic Acid Reagent
for Determination of Reducing Sugar. Analytical
Chemistry, (lll).
Diego, S. (2015). Application of the Direct Quadrature
Method of Moments for the modelling of the
enzymatic hydrolysis of cellulosic substrates.
Chemical Engineering Science, 149, 1-20. https://
doi.org/10.1016/j.ces.2016.04.029
Dwivedi, P., Alavalapati, J. R. R., & Lal, P. (2009).
Cellulosic ethanol production in the United States:
Conversion technologies, current production status,
economics, and emerging developments. Energy for
Sustainable Development, 13(3), 174-182. https://
doi.org/10.1016/j.esd.2009.06.003
Greene, E. R., Himmel, M. E., Beckham, G. T., & Tan,
Z. (2015). Glycosylation of Cellulases: Engineering
Better Enzymes for Biofuels. Advances in
Carbohydrate Chemistry and Biochemistry (1.
a
ed., Vol. 72). Elsevier Inc. https://doi.org/10.1016/
bs.accb.2015.08.001
Jamshidian, P., Golparvar, A. R., Naderi, M. R., & Darkhal,
H. (2013). Phenotypic correlations and path analysis
between ear yield and other associated characters in
corn hybrids (Zea mays L .). International Journal of
Farming and Allied Sciences, 2(S), 1273-1276.
Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., & Wu, N.
(2016). The comparison of obtaining fermentable
sugars from cellulose by enzymatic hydrolysis and
fast pyrolysis. Bioresource Technology, 200, 8-13.
https://doi.org/10.1016/j.biortech.2015.09.096
Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen,
J., Zhang, H., Holopainen-Mantila, U., … Kruus,
K. (2019). Effect of hydrothermal pretreatment
severity on lignin inhibition in enzymatic hydrolysis.
Bioresource Technology, 303-312. https://doi.
org/10.1016/j.biortech.2019.02.051
Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies,
M., & Zheng, Y. (2018). Inhibitory effects of lignin on
enzymatic hydrolysis: The role of lignin chemistry
and molecular weight. Renewable Energy, 123, 664-
674. https://doi.org/10.1016/j.renene.2018.02.079
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic
biomass for bioethanol production: Current
perspectives, potential issues and future prospects.
Progress in Energy and Combustion Science,
38(4), 449-467. https://doi.org/10.1016/j.
pecs.2012.03.002
Nan, Y., Yang, M., Xin, D., Li, K., Kuittinen, S., Pappinen,
A., & Zhang, J. (2019). Acetone-butanol-ethanol
solvents improved enzymatic hydrolysis of pretreated
energy grass. Fuel, 245(February), 406-412. https://
doi.org/10.1016/j.fuel.2019.02.043
Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara,
S., Morikawa, Y., & Ogasawara, W. (2012). A
new Zn(II) 2Cys 6-type transcription factor BglR
regulates ??-glucosidase expression in Trichoderma
reesei. Fungal Genetics and Biology, 49(5), 388-397.
https://doi.org/10.1016/j.fgb.2012.02.009
Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993).
Study of the enzymatic hydrolysis of cellulose for
production of fuel ethanol by the simultaneous
saccharication and fermentation process.
Biotechnology and bioengineering, 41(9), 846-853.
https://doi.org/10.1002/bit.260410903
Raele, R., Boaventura, J. M. G., Fischmann, A. A.,
& Sarturi, G. (2014). Scenarios for the second
generation ethanol in Brazil. Technological
Forecasting and Social Change, 87, 205-223.
https://doi.org/10.1016/j.techfore.2013.12.010
Rana, V., Eckard, A. D., Teller, P., & Ahring, B. K. (2014).
On-site enzymes produced from Trichoderma
reesei RUT-C30 and Aspergillus saccharolyticus for
hydrolysis of wet exploded corn stover and loblolly