52 │
Volumen 14, Número 35, Enero-Abril 2021, pp. 43 - 53
de Blécourt, M., Corre, M. D., Paudel, E., Harrison, R.
D., Brumme, R., & Veldkamp, E. (2017). Spatial
variability in soil organic carbon in a tropical montane
landscape: associations between soil organic carbon
and land use, soil properties, vegetation, and
topography vary across plot to landscape scales.
SOIL, 3(3), 123–137. https://doi.org/10.5194/soil-3-
123-2017
Dorji, T., Odeh, I., & Field, D. (2014). Vertical Distribution
of Soil Organic Carbon Density in Relation to Land
Use/Cover, Altitude and Slope Aspect in the Eastern
Himalayas. Land, 3(4), 1232–1250. https://doi.
org/10.3390/land3041232
ESRI. (2014). ArcGIS (10.3). www.esri.com
Garcia-Pausas, J., Casals, P., Camarero, L., Huguet,
C., Sebastià, M.-T., Thompson, R., & Romanyà, J.
(2007). Soil organic carbon storage in mountain
grasslands of the Pyrenees: effects of climate and
topography. Biogeochemistry, 82(3), 279–289.
https://doi.org/10.1007/s10533-007-9071-9
Hamer, U., Potthast, K., Burneo, J. I., & Makeschin, F.
(2013). Nutrient stocks and phosphorus fractions in
mountain soils of Southern Ecuador after conversion
of forest to pasture. Biogeochemistry, 112(1–3), 495–
510. https://doi.org/10.1007/s10533-012-9742-z
Koning, G. H. J. De, Veldkamp, E., & López-
Ulloa, M. (2003). Quantication of carbon
sequestration in soils following pasture to forest
conversion in northwestern Ecuador. Global
Biogeochemical Cycles, 17(4), 1–12. https://doi.
org/10.1029/2003GB002099
Liu, F., Zhang, G.-L., Sun, Y.-J., Zhao, Y.-G., & Li,
D.-C. (2013). Mapping the Three-Dimensional
Distribution of Soil Organic Matter across a
Subtropical Hilly Landscape. Soil Science Society
of America Journal, 77(4), 1241–1253. https://doi.
org/10.2136/sssaj2012.0317
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett,
G. M. (2009). Mapping continuous depth functions
of soil carbon storage and available water capacity.
Geoderma, 154(1–2), 138–152. https://doi.
org/10.1016/j.geoderma.2009.10.007
Moore, I. D., & Wilson, J. P. (1992). Length-slope factors
for the revised universal soil loss equation: simplied
method of estimation. Journal of Soil & Water
Conservation, 47(5), 423–428.
Moreira de Souza, G., & Trondoli Matricardi, E. A.
(2013). Análise compartiva dos modelos de elevação
SRTM, ASTER GDEM e TOPODATA para estimar o
fator topográco da USLE. Simpósio Brasileiro de
Sensoriamento Remoto, 4435–4442.
Nabiollahi, K., Eskandari, S., Taghizadeh-Mehrjardi,
R., Kerry, R., & Triantalis, J. (2019). Assessing
soil organic carbon stocks under land-use change
scenarios using random forest models. Carbon
Management, 10(1), 63–77. https://doi.org/10.108
0/17583004.2018.1553434
Paul, S., Flessa, H., Veldkamp, E., & López-Ulloa, M.
(2008). Stabilization of recent soil carbon in the
humid tropics following land use changes: evidence
from aggregate fractionation and stable isotope
analyses. Biogeochemistry, 87(3), 247–263. https://
doi.org/10.1007/s10533-008-9182-y
Ruiz Potma Goncalves, D., Sá, J. C. de M., Mishra,
U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F.
(2017). Soil type and texture impacts on soil organic
carbon storage in a sub-tropical agro-ecosystem.
Geoderma, 286, 88–97. https://doi.org/10.1016/j.
geoderma.2016.10.021
SAGARPA. (2012). Subíndice de Uso Sustentable del
Suelo – Metodología de Cálculo. In Línea de Base
del Programa de Sustentabilidad de los Recursos
Naturales Subíndice (pp. 1–66). FAO.
Schmidt, F., & Persson, A. (2003). Comparison of DEM
data capture and topographic wetness indices.
Precision Agriculture, 4(2), 179–192. https://doi.
org/10.1023/A:1024509322709
Seibert, J., Stendahl, J., & Sørensen, R. (2007).
Topographical inuences on soil properties in boreal