
│ 139
Márquez. Parámetros microbiológicos en sustratos agrícolas
Cheng, S., Xue, W., Gong, X., Hu, F., Yang, Y., & Liu,
M. (2024). Reconciling plant and microbial ecologi-
cal strategies to elucidate cover crop effects on soil
carbon and nitrogen cycling. Journal of Ecology,
112(12), 2901–2916. https://doi.org/10.1111/1365-
2745.14431
Dash, S., & Kujur, M. (2024). Contribution of Organic
Carbon, Moisture Content, Microbial Biomass-Car-
bon, and Basal Soil Respiration Affecting Microbial
Population in Chronosequence Manganese Mine
Spoil. Nature Environment and Pollution Techno-
logy, 23(4), 2315–2323. https://doi.org/10.46488/
NEPT.2024.v23i04.035
de Celis, M., de Sosa, L. L., Picca, G., González-Polo, N.,
Gómez-Ruano, C., Beneduce, L., Zaccone, C., & Pa-
nettieri, M. (2024). Alternative organic substrates
enhance tomato growth in rooftop farming by pro-
moting specic microbial communities. https://doi.
org/10.21203/rs.3.rs-5431099/v1
Fierer, N., Wood, S. A., & Bueno de Mesquita, C. P. (2021).
How microbes can, and cannot, be used to assess soil
health. Soil Biology and Biochemistry, 153, 108111.
https://doi.org/10.1016/j.soilbio.2020.108111
Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Gra-
bowska-Polanowska, B., Kowalczyk, A., & Lochyński,
P. (2023). An overview of natural soil amendments in
agriculture. Soil and Tillage Research, 225, 105462.
https://doi.org/10.1016/j.still.2022.105462
Guerrero-Brotons, M., Perujo, N., Romaní, A. M., & Gó-
mez, R. (2024). Advantages of using a carbon-rich
substrate in a constructed wetland for agricultu-
ral water treatment: Carbon availability and biota
development. Agriculture, Ecosystems & Envi-
ronment, 360, 108792. https://doi.org/10.1016/j.
agee.2023.108792
Guerrero Guerrero, E. M. (2020). Evaluación de sustra-
tos bajo un sistema hidropónico en un cultivo de fresa
con variables de calidad. Informador Técnico, 85(1),
52–63. https://doi.org/10.23850/22565035.2922
Kader, S. A., Spalevic, V., & Dudic, B. (2022). Feasibility
study for estimating optimal substrate parameters
for sustainable green roof in Sri Lanka. Environment,
Development and Sustainability, 26(1), 2507–2533.
https://doi.org/10.1007/s10668-022-02837-y
Liu, J., Kang, H., Tao, W., Li, H., He, D., Ma, L., Tang, H.,
Wu, S., Yang, K., & Li, X. (2023). A spatial distribu-
tion – Principal component analysis (SD-PCA) mo-
del to assess pollution of heavy metals in soil. Science
of The Total Environment, 859, 160112. https://doi.
org/10.1016/j.scitotenv.2022.160112
Ma, Z., Liang, T., Fu, H., Ma, Q., Chang, D., Zhang, J.,
Che, Z., Zhou, G., & Cao, W. (2024). Long-term green
manuring increases soil carbon sequestration via
decreasing qCO2 caused by lower microbial phos-
phorus limitation in a dry land eld. Agriculture,
Ecosystems & Environment, 374, 109142. https://
doi.org/10.1016/j.agee.2024.109142
Martín-Sanz, J. P., de Santiago-Martín, A., Valver-
de-Asenjo, I., Quintana-Nieto, J. R., González-Hue-
cas, C., & López-Lafuente, A. L. (2022). Comparison
of soil quality indexes calculated by network and prin-
cipal component analysis for carbonated soils under
different uses. Ecological Indicators, 143, 109374. ht-
tps://doi.org/10.1016/j.ecolind.2022.109374
Mauromicale, G., Monaco, A. Lo, Longo, A. M. G., & Res-
tuccia, A. (2005). Soil solarization, a nonchemical
method to control branched broomrape (Oroban-
che ramosa) and improve the yield of greenhouse
tomato. Weed Science, 53(6), 877–883. https://doi.
org/10.1614/WS-05-023R1.1
Monsalve Camacho, O. I., Henao Toro, M. C., & Gutié-
rrez Díaz, J. S. (2021). Caracterización de materiales
con uso potencial como sustratos en sistemas de cul-
tivo sin suelo. Ciencia & Tecnología Agropecuaria,
22(1). https://doi.org/10.21930/rcta.vol22_num1_
art:1977
Normi, S. S. M., & Baidurah, S. (2024). Transforming
Food Waste into Nutrient-Rich Fertilizer: A Sus-
tainable Path Towards Carbon Neutrality and
Circular Economy. In Biomass Valorization (pp.
261–292). Springer Nature Singapore. https://doi.
org/10.1007/978-981-97-8557-5_12