32 │
Volumen 13, Número 34, Septiembre-Diciembre 2020, pp. 28 - 33
Badawy, M. E. I., & Abdelgaleil, S. A. M. (2014).
Composition and antimicrobial activity of essential oils
isolated from Egyptian plants against plant pathogenic
bacteria and fungi. Industrial Crops and Products, 52,
776-782. https://doi.org/10.1016/j.indcrop.2013.12.003
Caccioni, D. R. L., Guizzardi, M., Biondi, D. M.,
Agatino Renda, & Ruberto, G. (1998). Relationship
between volatile components of citrus fruit essential oils
and antimicrobial action on Penicillium digitatum and
Penicillium italicum. International Journal of Food
Microbiology, 43(1), 73-79
Costa, M.G., Fonteles, T.V., De Jesus, A., Almeida,
F., De Miranda M., Fernandes F. & Rodrigues, S.
(2013). Food Bioprocess Technol 6: 997. https://doi.
org/10.1007/s11947-011-0746-9
Cristóbal-Luna, J. M., Álvarez-González, I., Madrigal-
Bujaidar, E., & Chamorro-Cevallos, G. (2018). Grapefruit
and its biomedical, antigenotoxic and chemopreventive
properties. Food and Chemical Toxicology, 112, 224-234.
https://doi.org/10.1016/j.fct.2017.12.038
Cushnie T.P. & Lamb J. (2005). Antimicrobial activity
of avonoids. International Journal of Antimicrobial
Agents. Volume 26, Issue 5, Pages 343-356. https://doi.
org/10.1016/j.ijantimicag.2005.09.002.
Duccio, R.L., Guizzardi, M., Biondi, D., Renda, A.
& Ruberto, G. (1998). Relationship between volatile
components of citrus fruit essential oils and antimicrobial
action on Penicillium digitatum and Penicillium
italicum. International Journal of Food Microbiology
Volume 43, Issues 1–2, Pages 73-79. https://doi.
org/10.1016/S0168-1605(98)00099-3
Flamini, G., & Cioni, P. L. (2010). Odour gradients
and patterns in volatile emission of different plant parts
and developing fruits of grapefruit (Citrus paradisi
L.). Food Chemistry, 120(4), 984-992. https://doi.
org/10.1016/j.foodchem.2009.11.037
Galanakis, C.M. (2012). Recovery of high added-value
components from food wastes: Conventional, emerging
technologies and commercialized applications. Trends
in Food Science & Technology, Volume 26, Issue 2, Pages
68-87. https://doi.org/10.1016/j.tifs.2012.03.003.
Ganzera, M., Aberham, A., & Stuppner, H. (2006).
Development and Validation of an HPLC / UV /
MS Method for Simultaneous Determination of 18
Preservatives in Grapefruit Seed Extract. Journal of
Agricultural and Food Chemistry, 54, 3768–3772
Garcia-Castello, E.M., Rodriguez-Lopez, A.D.,
Mayor, L., Ballesteros, R., Conidi, C. & Cassano, A.
(2015). Optimization of conventional and ultrasound
assisted extraction of avonoids from grapefruit
(Citrus paradisi L.) solid wastes. LWT - Food Science
and Technology, Volume 64, Issue 2, Pages 1114-1122.
https://doi.org/10.1016/j.lwt.2015.07.024.
Gómez-Mejía, E., Rosales-Conrado, N., León-
González, M. E., & Madrid, Y. (2019). Citrus peels waste
as a source of value-added compounds: Extraction
and quantication of bioactive polyphenols. Food
Chemistry, 295, 289-299. https://doi.org/10.1016/j.
foodchem.2019.05.136
Karaman E., Yılmaz E., & Tuncel N. B., (2017).
Physicochemical, microstructural and functional
characterization of dietary bers extracted from lemon,
orange and grapefruit seeds press meals. Bioactive
Carbohydrates and Dietary Fibre, 11, 9-17, https://doi.
org/10.1016/j.bcdf.2017.06.001.
Kuete, V., Ngameni, B., Simo, C.C.F., Tankeu, R.K.,
Ngadjui, B.T., Meyer, J.J.M., Lall, N. & Kuiate, J.R.
(2006). Actividad antimicrobiana de los extractos crudos
y compuestos de Ficus chlamydocarpa y Ficus cordata
(Moraceae) J Ethnopharmacol; 120 17–24. http://
dx.doi.org/10.1016 / j.jep.2008.07.026
Kumar, K., Narayani, M., Subanthini, A. &
Jayakumar M. (2011). Antimicrobial Activity and
Phytochemical Analysis of Citrus Fruit Peels -Utilization
of Fruit Waste. International Journal of Engineering
Science and Technology. 3. 5414-5421
Londoño-Londoño, J., Rodrigues, V., Lara, O., Gil,
A., Crecsynski, T., Arango, G., Ramirez, J.R. (2010).
Clean recovery of antioxidant avonoids from citrus peel:
Optimizing an aqueous ultrasound-assisted extraction
method. Food Chemistry, Volume 119, Issue 1, Pages 81-
87. https://doi.org/10.1016/j.foodchem.2009.05.075.