Modelización de un biorreactor discontinuo para lixiviar residuos eléctricos y electrónicos en Guayaquil, Ecuador

Keywords: modeling, Batch bioreactor, EEE, bioleaching, waste, PCBs

Abstract

The use of electrical and electronic equipment (EEE) has increased considerably worldwide, generating large amounts of waste electrical and electronic equipment (WEEE) of which only 17% is treated. The processing and extraction of metals from printed circuit boards (PCBs) of WEEE is done by a combination of physical and chemical methods, which become highly polluting. Therefore, it is necessary to formulate new eco-friendly strategies to prevent the impact of environmental pollution. The present research proposes to design a Batch bioreactor for the recovery of Cu from WEEE. For this purpose, equations of the modeling of a Batch bioreactor were coupled with real parameters and values taken from the city of Guayaquil and then designed using these values in the AutoCAD design software. A bioreactor was obtained with an optimal agitation considering 8 flat blades for mixing, also the appropriate material is stainless steel, and the optimum working temperature is 28°C. Applying these parameters, a Cu recovery of 96% is obtained in the city of Guayaquil.

Downloads

Download data is not yet available.

References

Barrera-Herrera, J., Aranguren-Riaño, N., Páez-Ruíz, Y., Molina-Pacheco, L., Pedroza-Ramos, A., & Díaz-Ballesteros, C. (2020). Incidencia del tiempo de retención hidráulica en el plancton del reservorio La Chapa (Santana, Boyacá), Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 407–422. https://doi.org/10.18257/raccefyn.1022

Barmettler, F., Castelberg, C., Fabbri, C., & Brandl, H. (2016). Microbial mobilization of rare earth elements (REE) from mineral solids—A mini-review. AIMS Microbiology, 2(2), 190–204. doi:10.3934/microbiol.2016.2.190

Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158(2–3), 228–256. https://doi.org/10.1016/j.jhazmat.2008.02.001

Das, S. & Ting, Y. (2017). Evaluation of wet digestion methods for quantification of metal content in electronic scrap material. Resource, vol. 6, no 4, p. 64. DOI: 10.3390/resources6040064

Dueñas A., (2021). Biolixiviación de Au, Ag, Cu y pb de residuos de aparatos eléctricos y electrónicos (RAEE), mediante bacterias moderadamente termófilas nativas de aguas termales de la región Arequipa, a condiciones de biorreactor Batch. Universidad nacional de san agustín de arequipa escuela de posgrado unidad de posgrado de la facultad de ingeniería de procesos Tesis presentada por el Bachiller. http://190.119.145.154/bitstream/handle/20.500.12773/13637/UPdugoap.pdf?sequence=1&isAllowed=y

Fathollahzadeh, H., Becker, T., Eksteen, J. J., Kaksonen, A. H., & Watkin, E. L. J. (2018). Microbial contact enhances the bioleaching of rare earth elements. Bioresource Technology Reports, 3, 102–108. doi:10.1016/j.biteb.2018.07.004

Ghosh, B., Ghosh, M.K., Parhi, P., Mukherjee, P.S., Mishra, B.K., 2015. Waste Printed Circuit Boards recycling: an extensive assessment of current status. J. Clean. Prod. 94, 5–19. https://doi.org/10.1016/j.jclepro.2015.02.024.

Hernández, A. F., Montiel, M. F., Reyes, J. R., & Zaragoza, C. A. (2013). Diseño y modelado

de un bioreactor tipo batch y continuo para aplicaciones de control automático. In Congreso Nacional de Control Automático (Vol. 2013, pp. 86-92).

Hubau, A., Minier, M., Chagnes, A., Joulian, C., Silvente, C., & Guezennec, A. (2020). Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Separation and Purification Technology, 238, 116481. https://doi.org/10.1016/j.seppur.2019.116481

Ministerio del Ambiente Ec. (2022). Ecuador reciclará 700 toneladas de residuos electrónicos y eléctricos – Ministerio del Ambiente, Agua y Transición Ecológica. https://www.ambiente.gob.ec/ecuador-reciclara-700-toneladas-de-residuos-electronicos-y-electricos/

Misari, F. (2016). Biolixiviacion, Tecnologia de la lixiviación bacteriana de minerales. Lima, Perú: IAKOB Comunicadores y Editores SAC.

Namias, J., 2013. The Future of Electronic Waste Recycling in the United States: Obstacles and Domestic Solutions. pp. 66. https://doi.org/10.1021/acs.jpclett.8b00176

Norris, P. R., Burton, N. P., & Clark, D. A. (2013). Mineral sulfide concentrate leaching in high-temperaturebioreactors. Minerals Engineering, 48, 10–19. https://doi.org/10.1016/j.mineng.2013.01.001

ONU (2021). Los basureros de aparatos digitales ponen en riesgo la salud de los niños. Noticias ONU. https://news.un.org/es/story/2021/06/1493342

Pérez N. (2016). Aislamiento y determinación de bacterias bio oxidantes del género Acidithiobacillus y Leptospirillum presentes en las aguas residuales de las unidades mineras de Recuay – Huaraz. Tesis para optar al Título Profesional de Licenciada en Biología. Universidad Ricardo Palma, Facultad de Ciencias Biológicas escuela profesional de Biología. Lima, Perú. http://repositorio.urp.edu.pe/handle/urp/914 (accessed on 31/05/2022).

Permanyer, O (2013). Situación e Impacto de los residuos de Aparatos Eléctricos y Electrónicos (RAEE) Caso de Estudio: los Ordenadores (Master). Universidad Politécnica de Barcelona, 2013. https://upcommons.upc.edu/bitstream/handle/2099.1/19666/TFM%20Olga%20Permanyer.pdf

Primer contendedor con desechos electrónicos salió de Ecuador hacia Canadá. (2017). Diario El Universo. Obtenido el 18 de agosto de 2018. https://www.elcomercio.com/actualidad/negocios/primer-contendedor-desechoselectronicos-salio.html

Potysz, A., van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N. L., & Guibaud, G. (2015). Copper metallurgical slags – Current knowledge and fate: A review. Critical Reviews in Environmental Science and Technology, 45(22), 2424–2488. doi:10.1080/ 10643389.2015.1046769

Protomastro, G. (2013). Minería urbana y la gestión de los recursos electrónicos. Grupo UNO. Buenos Aires. (pp. 155-181).

Rao, C., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K., Gerven, T. & Van. Selective recovery of rare earth from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 2016, 92, 151–159. doi:10.1016/j.mineng.2016.03.002

Riet, V. K., & Tramper, J. (1991). Basic Bioreactor Design (Electrical Engineering &

Electronics) (1 a ed.). CRC Press. https://doi.org/10.1201/9781482293333

Venkata Dasu, V., Panda, T., & Chidambaram, M. (2003). Determination of significant

parameters for improved griseofulvin production in a batch bioreactor by Taguchi’s method. Process Biochemistry, 38(6), 877–880. https://doi.org/10.1016/s0032-9592(02)00068-7

Wang, S.; Zheng, Y.; Yan, W.; Chen, L.; Dummi, G. & Zhao, F.. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. Journal of hazardous materials, 2016, vol. 320, p. 393-400. doi:10.1016/j.jhazmat.2016.08.054

Walawalkar, M., Nichol, C. K., & Azimi, G.. An innovative process for the recovery of consumed acid in rare-earth elements leaching from phosphogypsum. Industrial & Engineering Chemistry Research, 2016, 55(48), 12309–12316. doi:10.1021/acs.iecr.6b03357.

Published
2023-01-31
How to Cite
Ortiz, M. A., Garcia , L., Culcay , M., & Sánchez, J. (2023). Modelización de un biorreactor discontinuo para lixiviar residuos eléctricos y electrónicos en Guayaquil, Ecuador. Science Magazine Unemi, 16(41), 18-27. https://doi.org/10.29076/issn.2528-7737vol16iss41.2023pp18-27p
Section
Artículos Científicos