EFICACIA DEL INÓCULO ENCAPSULADO EN PROCESO DE COMPOSTAJE DE RESIDUOS AGROPECUARIOS
DOI:
https://doi.org/10.29076/issn.2528-7737vol18iss47.2025pp40-50pResumen
Esta investigación tuvo como objetivo evaluar la eficacia del inóculo microbiano encapsulado en pilas de compostaje de residuos agropecuarios. Las pilas se prepararon con una mezcla de 100 kg de estiércol de gallinas ponedoras y 200 kg de cáscara de maní, las variantes del inóculo fueron: T1 (200 g de cápsulas), T2 (400 g de cápsulas), T3 (600 g de cápsulas) y un testigo (sin inóculo). Durante el proceso de compostaje se analizaron los parámetros físicos, químicos y biológicos del sustrato. Como resultado se obtuvo que todas las pilas mostraron temperaturas superiores a 55°C. El valor de pH en las pilas con inoculo fue ligeramente alcalino en el rango de 7.6 a 8.2, mientras que los valores de CE oscilaron entre 1.03 a 1.58 dS m-1. Por otro lado, el contenido de humedad osciló entre el 55 y 60%. Los tratamientos T2 y T3 presentaron mayor % Materia orgánica, contenido de macronutrientes e índice de germinación, a diferencia que T2 presento el mayor contenido de Fe y Mn. Se concluye que los tratamientos con adición del inóculo microbiano presentaron indicadores físico, químicos y de fitotoxicidad de categoría A.
Descargas
Referencias
Abdel-Rahman, M. A., Nour El-Din, M., Refaat, B. M., Abdel-Shakour, E. H., Ewais, E. E. D., & Alrefaey, H. M. A. (2016). Biotechnological Application of Thermotolerant Cellulose-Decomposing Bacteria in Composting of Rice Straw. Annals of Agricultural Sciences, 61(1), 135–143. https://doi.org/10.1016/j.aoas.2015.11.006.
Adzmi, F., Meon, S., Musa, M. H., & Yusuf, N. A. (2012). Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. Journal of Microencapsulation, 29(3), 205–210. https://doi.org/10.3109/02652048.2012.659286.
Amira Dayana, R., Roshanida, A. R., Rosli, M. I., Siti Fatimah Zahrah, M. F., Mohd Anuar, J., & Nazrul Adha, C. M. (2011). Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using trichoderma virens. African Journal of Biotechnology, 10(81), 18775–18780. https://doi.org/10.5897/AJB11.2751.
Anyanwu, C. F., Ngohayon, S. L., Ildefonso, R. L., & Ngohayon, J. L. (2013). Application of Indigenous Microorganisms (IMO) for Bio-Conversion of Agricultural Waste. International Journal of Science and Research, 4(5).
Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027.
Canadian Council of the Ministers of the Environment [CCME], (2005). Guidelines for Compost Quality. ISBN 1-896997-60-0. https://ccme.ca/en/res/compostgdlns_1340_e.pdf.
Chin, K. L., H’ng, P. S., Chai, E. W., Khoo, P. S., Lee, C. L., & Go, W. Z. (2020). Valorization of Lignocellulosic Food Industry Waste in Malaysia by Accelerated Co-composting Method: Changes in Physicochemical and Microbial Community. Waste and Biomass Valorization, 11(9), 4871–4884. https://doi.org/10.1007/s12649-019-00825-4.
Christian, A., Evanylo, K. G., Pease, W. J., Evanylo, G. K., & Pease, J. W. (2009). On Farm Composting A Guide to Principals, Planning and Operations. In Virg. Coop. Ext. https://vtechworks.lib.vt.edu/bitstream/handle/10919/48077/452-232_pdf.pdf?sequence=1&isAllowed=y.
Devi, S., Sharma, C. R., & Singh, K. (2012). Microbiological biodiversity in poultry and paddy straw wastes in composting systems. Brazilian Journal of Microbiology, 43(1). https://doi.org/10.1590/S1517-83822012000100034.
Dorahy, C.G., Pirie, A.D., Pengelly, P., Muirhead, L.M, and Chan, K.Y. (2007). Guidelines for Using Compost in Land Rehabilitation and Catchment Management. Department of Environment and Climate Change. https://www.epa.nsw.gov.au/yourenvironment/waste/wastefacilities/organicsprocessingfacilities//media/EPA/Corporate%20Site/resources/warrlocal/070527compostcatchmgt.ashx?la=en&hash=51BB724F5E2C7EB8A4BB4CB5D272BF6328593DB6.
Dos Santos, G. F., Locatelli, G. O., Coêlho, D. A., Botelho, P. S., de Amorim, M. S., de Vasconcelos, T. C. L., & Bueno, L. A. (2015). Factorial design, preparation and characterization of new beads formed from alginate, polyphosphate and glycerol gelling solution for microorganism microencapsulation. Journal of Sol-Gel Science and Technology, 75(2), 345–352. https://doi.org/10.1007/s10971-015-3705-5.
Elcik, H., Zougrana, A., & Bekaraki, N. (2016). Investigation of aerobic compostability of municipal solid waste in istanbul. Sigma Journal Engineering and Natural Sciences, 34(2), 211–220.
European Commission. (2015). Establishing the ecological criteria for the award of the EU Ecolabel for growing media, soil improvers and mulch (2015/2099/EU). Official Journal of the European Union, 75.
Gaind, S., Pandey, A. K., & Lata. (2005). Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants. Journal of Basic Microbiology, 45(4), 301–311. https://doi.org/10.1002/jobm.200410483.
Gao, M., Liang, F., Yu, A., Li, B., & Yang, L. (2010). Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere, 78(5), 614–619. https://doi.org/10.1016/j.chemosphere.2009.10.056.
Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178. https://doi.org/10.1016/j.biortech.2012.02.099.
Insam, H., & De Bertoldi, M. (2007). Chapter 3 Microbiology of the composting process. In Waste Management Series (Vol. 8, pp. 25–48). https://doi.org/10.1016/S1478-7482(07)80006-6.
Jadia, C. D., & Fulekar, M. H. (2008). Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environmental Engineering and Management Journal, 7(5), 547–558. https://doi.org/10.30638/eemj.2008.078.
Jalilpour, Y., Abdollahzade, B., ParviziFard, G., Aghazadeh, M., Bialvaei, A. Z., & Kafil, H. S. (2017). A simple route for preparation of pH-sensitive hydrogels by using egg white proteins in alginate scaffold for the encapsulation of probiotics. Ars Pharmaceutica, 58(3). https://doi.org/10.4321/S2340-98942017000300006.
Jia, X., Qin, X., Tian, X., Zhao, Y., Yang, T., & Huang, J. (2021). Inoculating with the microbial agents to start up the aerobic composting of mushroom residue and wood chips at low temperature. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105294.
Kalamdhad, A. S., & Kazmi, A. A. (2009). Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere, 74(10). https://doi.org/10.1016/j.chemosphere.2008.11.058.
Krasaekoopt, W. Bhandari, B y Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yogurt. International Dairy Journal. 13(3-13).
Li, J., Wang, X., Cong, C., Wan, L., Xu, Y., Li, X., Hou, F., Wu, Y., & Wang, L. (2020). Inoculation of cattle manure with microbial agents increases efficiency and promotes maturity in composting. 3 Biotech, 10(3). https://doi.org/10.1007/s13205-020-2127-4.
Lima, J. R., Locatelli, G. O., Finkler, L., & Luna-Finkler, C. L. (2014). Incorporação de Lactobacillus casei microencapsulado em queijo tipo coalho. Ciência & Saúde, 7(1), 27–34. https://doi.org/10.15448/1983-652x.2014.1.15639.
Lopez-Gonzalez, J. A., Lopez, M. J., Vargas-Garcia, M. C., Suarez-Estrella, F., Jurado, M., & Moreno, J. (2013). Tracking organic matter and microbiota dynamics during the stages of lignocellulosic waste composting. Bioresource Technology, 146, 574–584. https://doi.org/10.1016/j.biortech.2013.07.122.
Lotfipour, F., Mirzaeei, S., & Maghsoodi, M. (2012). Evaluation of the effect of cacl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Advanced Pharmaceutical Bulletin, 2(1), 71–78. https://doi.org/10.5681/apb.2012.010.
Milanović, V., Osimani, A., Cardinali, F., Taccari, M., Garofalo, C., Clementi, F., Ashoor, S., Mozzon, M., Foligni, R., Canonico, L., Ciani, M., & Aquilanti, L. (2019). Effect of inoculated azotobacteria and Phanerochaete chrysosporium on the composting of olive pomace: Microbial community dynamics and phenols evolution. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53313-z.
Moldes, A., Cendón, Y., & Barral, M. T. (2007). Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresource Technology, 98(16), 3069–3075. https://doi.org/10.1016/j.biortech.2006.10.021.
Norma Ambiental para el Distrito Federal NADF-020-AMBT-2011, Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2012). https://doi.org/http://data.sedema.cdmx.gob.mx/padla/images/stories/normatividaddf/nadf_020_ambt_2011.pdf.
Norma Técnica Colombiana 5167 [NTC5167], (2011). Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo.
Norma Chilena 2880 [NCh2880], (2003). Norma Chilena Oficial. Compost-Clasificación y requisitos. Instituto Nacional de Normalización (INN), Santiago, Chile.
Nutongkaew, T., Duangsuwan, W., Prasertsan, S., & Prasertsan, P. (2014). Effect of inoculum size on production of compost and enzymes from palm oil mill biogas sludge mixed with shredded palm empty fruit bunches and decanter cake. Songklanakarin Journal of Science and Technology, 36(3), 1438–1443.
Neata, G. Teodorescu, R. Dinca, L. Basaraba, A. (2015). Physico-chemical and microbiological composition of composts from Bucharest municipal waste. Agriculture and Agricultural Science Procedia. 6: 486 – 491.
Petric, I., Šestan, A., & Šestan, I. (2009). Influence of wheat straw addition on composting of poultry manure. Process Safety and Environmental Protection, 87(3), 206–212. https://doi.org/10.1016/j.psep.2009.02.002.
Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon, 6(2). https://doi.org/10.1016/j.heliyon.2020.e03343.
Rebollido, R., Martínez, J., Aguilera, Y., Melchor, K., Koerner, I., & Stegmann, R. (2008). Microbial populations during composting process of organic fraction of municipal solid waste. Applied Ecology and Environmental Research, 6(3). https://doi.org/10.15666/aeer/0603_061067.
Ribeiro, N. de Q., Souza, T. P., Costa, L. M. A. S., Castro, C. P. de, & Dias, E. S. (2017). Microbial additives in the composting process. Ciência e Agrotecnologia, 41(2), 159–168. https://doi.org/10.1590/1413-70542017412038216.
Seoudi, O. A.-T. (2013). Enhancement of Cotton Stalks Composting with Certain Microbial Inoculations. Journal of Advanced Laboratory Research in Biology, 4(1).
Song, C., Zhang, Y., Xia, X., Qi, H., Li, M., Pan, H., & Xi, B. (2018). Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste. Microbial Biotechnology, 11(6), 1124–1136. https://doi.org/10.1111/1751-7915.13294.
Tiquia, S. M., & Tam, N. F. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology, 65(1–2). https://doi.org/10.1016/S0960-8524(98)00024-8.
Vallini, G., Gregorio, S. Di, Pera, A., & Cunha Queda, A. C. F. (2002). Exploitation of composting management for either reclamation of organic wastes or solid-phase treatment of contaminated environmental matrices. In Environmental Reviews (Vol. 10, Issue 4, pp. 195–207). https://doi.org/10.1139/a02-008.
Wei, Z., Xi, B., Zhao, Y., Wang, S., Liu, H., & Jiang, Y. (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, 68(2), 368–374. https://doi.org/10.1016/j.chemosphere.2006.12.067.
Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Management, 39, 119–129. https://doi.org/10.1016/j.wasman.2015.02.037.
Zhou, S., Zhang, X., Liao, X., Wu, Y., Mi, J., & Wang, Y. (2019). Effect of different proportions of three microbial agents on ammonia mitigation during the composting of layer manure. Molecules, 24(13). https://doi.org/10.3390/molecules24132513.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 CIENCIA UNEMI

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores pueden mantener el copyright, concediendo a la revista el derecho de primera publicación. Alternativamente, los autores pueden transferir el copyright a la revista, la cual permitirá a los autores el uso no-comercial del trabajo, incluyendo el derecho a colocarlo en un archivo de acceso libre.