Catalyst applications and their evaluation through life cycle assessment

Keywords: MSW, Catalysts, Environmental assessment, LCA

Abstract

Catalyst use will continue to increase in the coming years, as they are essential in the manufacture of commodities and petrochemicals and chemicals, pharmaceuticals, and foodstuffs, and also serves as a tool for improving the performance of new energy technologies. On the other hand, the synthesis of catalysts generates waste in laboratories and factories, presenting an environmental challenge due to its particular composition. In this context, life cycle analysis (LCA) can quantify environmental impacts and identify areas of vulnerability that should be addressed. As a result, this review evaluated three catalysts: Zn, Pd, and Pt, as well as their environmental impacts. Finally, some possible uses include reducing greenhouse gas (GHG) emissions and increasing energy and urea production yields, as well as total gas and hydrogen yields; the use of base residues as catalysts was also considered, for example, in the petroleum industry and the ashes generated during municipal solid waste (MSW) combustion processes

Downloads

Download data is not yet available.

References

Abdullah, B., N.A. Abd Ghani y D.-V.N. Vo (2017). Recent advances in dry reforming of methane over Ni-based catalysts, Journal of Cleaner Production, 162, 170-185. doi.org/10.1016/j.jclepro.2017.05.176

Abdelkareem, M.A., et al., (2018). Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell, Journal of Environmental Chemical Engineering, 6(1), 332-337. doi.org/10.1016/j.jece.2017.12.007

Acevedo J., Arenas E., Zapata Z. y Posso F., (2019). La importancia de los catalizadores en la gasificación de biomasa: Una revisión de la literatura, Desarrollo e inovación en ingeniería, 4, 153-171. doi:10.5281/zenodo.3787679.

Agarski, B., et al., (2017). Comparative life cycle assessment of Ni-based catalyst synthesis processes. Journal of Cleaner Production, (pp.7-15). doi:10.1016/j.jclepro.2017.06.012

Ahmed, T., et al., (2018). Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound, Fuel, 211, 566-571. doi.org/10.1016/j.fuel.2017.09.051

Akcil, A. et al. (2015) "A review of metal recovery from spent petroleum catalysts and ash", Waste Management, 45, pp. 420-433. doi: 10.1016/j.wasman.2015.07.007.

Al-Rahbi, A. S. y Williams, P. T. (2019) "Waste ashes as catalysts for the pyrolysis-catalytic steam reforming of biomass for hydrogen-rich gas production", Journal of Material Cycles and Waste Management. Springer Japan, 21(5), pp. 1224-1231. doi: 10.1007/s10163-019-00876-8.

Asencio I., Rincón J., Camarillo R. y Martín A., (2008). RECICLADO DE CATALIZADORES DE AUTOMÓVILES ANÁLISIS DE LAS TÉCNICAS ACTUALES Y PROPUESTAS DE FUTURO, Red Iberoamericana en gestión y aprovechamiento de residuos. Recuperado de: http://www.redisa.net/doc/artSim2008/tratamiento/A3.pdf

Bobba, S., et al. (2016), LCA of tungsten disulphide (WS2) nano-particles synthesis: state of art and from-cradle-to-gate LCA, Journal of Cleaner Production, (Supplement C), 1478-1484. doi: 10.1016 / j.jclepro.2016.07.091

Brown A., (2005). Consideraciones sobre el estudio de catálisis homogénea y heterogénea, ICIDCA. Sobre los Derivados de la Caña de Azúcar, 39(1), 10-14. Recuperado de: https://www.redalyc.org/pdf/2231/223120659002.pdf

Castells, X. (2012). Reciclaje de residuos industriales "Residuos sólidos urbanos y fangos de depuradoras" (Segunda ed.). Madrid, España: Diaz de Santos. Obtenido de https://books.google.com.ec/books/about/Reciclaje_de_residuos_industriales.html?id=8yWSZEbQSXgC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q=Hidrotratamiento&f=false

Chen, S., et al, (2018). Study of catalytic hydrodeoxygenation performance of Ni catalysts: Efectos del método preparado, Renewable Energy, 115, 1109- 1117. doi.org/10.1016/j.renene.2017.09.028

Chorkendorff I. y Iemantsverdriet J., (2003), Concepts of Modern Catalysis and Kinetics, Weinheim, Alemania, WILEY- VCH Verlag GmbH & Co. KGaA, (pp: 377).

Christou S.Y., Birgersson H., Efstathiou A.M., (2007). Reactivation of severely aged commercial three-way catalysts by washing with weak EDTA and oxalic acid solutions. Applied Catalysis B: Environmental, 71 (3-4), 185-198. Doi: 10.1016/j.apcatb.2006.09.008

Cole-Hamilton D. J. y Tooze R. P., (2006) Catalysis by Metal Complexes Volume 30, de CATALYST SEPARATION, RECOVERY AND RECYCLING Chemistry and Process Design, Dordrecht, Holanda, Springer, (pp: 206-209).

Damyanova, S., et al, (2018). Structure and surface properties of ceria-modified Ni- based catalysts for hydrogen production, Applied Catalysis B: Ambiental, 225, 340-353. doi.org/10.1016/j.apcatb.2017.12.002

Domènech X. y Peral J., (2012), Química Ambiental de sistemas terrestres, CAPÍTULO 4 Comportamiento y destino de los contaminantes en los sistemas terrestres, Barcelona, España, Reverté. S.A., (pp: 152). Recuperado de: https://books.google.com.ec/books?id=S4bjFOEXRzMC&pg=PA180&dq=X.+Dom%C3%A8nech+y+J.+Peral+Comportamiento+y+destino+de+los+contaminantes+en+los+sistemas+terrestres&hl=es&sa=X&ved=2ahUKEwjnx8LF4K7wAhXDc98KHXJtBXoQ6AEwAHoECAAQAg#v=onepage&q=X.%20Dom%C3%A8nech%20y%20J.%20Peral%20Comportamiento%20y%20destino%20de%20los%20contaminantes%20en%20los%20sistemas%20terrestres&f=false

Feijoo, S., et al, (2017). Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles, Journal of Cleaner Production, 143, 528-538. doi.org/10.1016/j.jclepro.2016.12.079

Hanindriyo, A.T., et al., (2017). Computational Design of Ni-Zn Based Catalyst for Direct Hydrazine Fuel Cell Catalyst Using Density Functional Theory, Procedia Engineering, 170, 148-153. doi.org/10.1016/j.jece.2017.12.007

Hernández C. (2018), Repositorio Digital Universidad Técnica del Norte. Recuperado de: http://repositorio.utn.edu.ec/bitstream/123456789/8090/2/ARTÍCULO.pdf

Hernández S. y Diaz M. d. L., (2018). EVALUACIÓN DE UN PROCESO INDUSTRIAL DE PRODUCCIÓN DE BIODIÉSEL MEDIANTE ANÁLISIS DE CICLO DE VIDA, Revista internacional de contaminación ambiental, 34 (3), 453-465. doi: 10.20937/rica.2018.34.03.08

Hill, J.M., Sustainable and/or waste sources for cataysts: porous carbon development and gasification. Catalysis Today, 2017. 285: p. 204-210

Hirano, T. y Xu, Y., (2017). Catalytic properties of a pure Ni coil catalyst for methane steam reforming, International Journal of Hydrogen Energy, 42(52), 30621-30629. doi.org/10.1016/j.ijhydene.2017.10.135

Huang, S., et al., (2017). Reductive de-polymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts, Fuel, 209, 579-586. doi.org/10.1016/j.fuel.2017.08.031

Jin, E. (2012), LIFE CYCLE ASSESSMENT OF TWO CATALYSTS USED IN THE BIOFUEL SYNGAS CLEANING PROCESS AND ANALYSIS OF VARIABILITY IN GASIFICATION, Oklahoma, United State. Recuperado de: https://shareok.org/bitstream/handle/11244/14910/Jin_okstate_0664M_13506.pdf?sequence=1

Lee T.J., y Kim Y.G., (1984). Redispersion of Supported Platinum Catalysts. J. Catal. 90 (2), 279-291. doi: 10.1016/0021-9517(84)90256-2

Luque R., (2010). Catalizadores de diseño para la producción de compuestos químicos, Dialnet, 106(4), 296-303. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=3347192

Mathers, R.T. y Meier, M.A.R., (2011). Green Polymerization Methods: Renewable Starting Materials, Catalysis and Waste Reduction, Wiley. doi.org/10.1016/j.ijhydene.2017.10.135

Mu, D., et al, (2010). Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion, Environ Manage. 46(4): p. 565-578. Recuperado de https://link.springer.com/article/10.1007%2Fs00267-010-9494-2

Peng, P., et al., (2017), Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia, International Journal of Hydrogen Energy, 42(30), 19056-19066. doi.org/10.1016/j.ijhydene.2017.06.118

Petkovic L.M., Ginosar D.M., Burch K.C., (2005). Supercritical Fluid Removal of Hydrocarbons Adsorbed on Wide-Pore Zeolite Catalysts. J. Catal, 234 (2), 328- 339. doi: 10.1016/j.jcat.2005.06.027

Regalbuto J., (2007), CATALYST PREPARATION Science and Engineering, Boca Raton, Estados Unidos, CRC PressTaylor & Francis Group, (pp: 449-451).

Reza, O. A., y Zanella., R. (2011). “Síntesis, caracterización y pruebas de actividad de catalizadores compuestos de nanopartículas de oro soportadas en TiO2 dopado con Itrio y Cobalto”. Obtenido de NanoMe'11 es el IV Encuentro Internacional e Interdisciplinario en Nanociencia y Nanotecnología organizado por la Universidad Nacional Autónoma de México (UNAM) Recuperado de: https://www.ceiich.unam.mx/nanomex2011/MemoriasNanomex/obt%20y%20caract%20PDF/56-OR.pdf

Suárez, D., Coral, K., y Gallegos, W. (2017). strategias de gestión ambiental para el manejo y disposición final del catalizador gastado de la unidad de craqueo catalítico fluidizado (FCC) generado en una refinería estatal de Ecuador. Revista de la Universidad Internacional del Ecuador, INNOVA Research Journal , 28-44.

Thompson D.N., Ginosar D.M., Burch K.C., (2005). Regeneration of a Deactivated USY Alkylation Catalyst Using Supercritical Isobutane. Applied Catalysis A: General, 279(1-2), 109-116. doi: 10.1016/j.apcata.2004.10.018

Torres, E. y. Méndez A. (2014). Biocatálisis Ambiental: Detección, cuantificación y tratamiento de. BUAP, Benemérita Universidad Autónoma de Puebla, Puebla, México. Recuperado de: https://icuap.buap.mx/sites/default/files/revista/2014/01/biocatalisis.pdf

Umile, T.P., (2015), Catalysis for Sustainability: Goals, Challenges, and Impacts. 8 Life Cycle Thinking Informs Catalysis Choice and Green Chemistry. CRC Press. Recuperado de: https://scholar.google.com.ec/scholar?q=Catalysis+for+Sustainability:+Goals,+Challenges,+and+Impacts.+8+Life+Cycle+Thinking+Informs+Catalysis+Choice+and+Green&hl=es&as_sdt=0&as_vis=1&oi=scholart

Yaseneva, P., et al., Efficient reduction of bromates using carbon nanofibre supported catalysts: Estudio experimental y de evaluación comparativa del ciclo de vida. Chemical Engineering Journal, 2014. 248: p. 230-241. doi:10.1016/j.cej.2014.03.034

Zanella R., (2014). Aplicación de los nanomateriales en catálisis*, Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 7 (12), 66-82. Recuperado de https://repositorio.unam.mx/contenidos/57163

Published
2021-09-14
How to Cite
Chicaiza Ortiz, C. D., Salazar García, K. V., Diéguez Santana, K., Chicaiza Ortiz, Ángel F., Navarrete Villa, V. P., & Zhang, J. (2021). Catalyst applications and their evaluation through life cycle assessment. Science Magazine Unemi, 14(37), 60-72. https://doi.org/10.29076/issn.2528-7737vol14iss37.2021pp60-72p
Section
Artículos Científicos