
Volumen 9, Nº 17, diciembre 2025 - mayo 2026, pp. 213-218
Puruncajas et al. Obtención de un extracto con capacidad anoxidante
217
Agropecuaria Continua. 2024. Availa-
ble from: https://app.pow-erbi.com/
view?r=eyJrIjoiZTEyY2NiZDItYjIzYi00ZG-
Q1LTlkNGEtNDE1OG-ViM2Q1N2VlIiwid-
CI6ImYxNThhMmU4LWNhZWMtNDQw-
Ni1iMGFiLWY1ZTI1OW-JkYTExMiJ9&pa-
geName=ReportSection
4. Martillo J, Lesme R, Oliva L. Estimación
del potencial energético de la tusa en la
provincia de Los Ríos y Guayas, Ecuador.
Centro Azúcar. 2020;47:11-21
5. Carvajal E, Guamn-Burneo C, Portero
P, Salas E, Tufio C, Bastidas B. Aprove-
chamiento de resi-duos orgánicos en
distintos cultivos de ecuador. AXIOMA.
2017;(16):84–95
6. Rodríguez De Luna SL, Ramírez-Garza
RE, Serna Saldívar SO. Environmentally
Friendly Meth-ods for Flavonoid Extrac-
tion from Plant Material: Impact of Their
Operating Conditions on Yield and An-
tioxidant Properties. The Scientific World
Journal. 2020;2020(1):6792069
7. Pareek S, Sagar NA, Sharma S, Kumar V,
Agarwal T, González-Aguilar GA, et al.
Chlorophylls: Chemistry and Biological
Functions. Fruit and Vegetable Phytoche-
micals: Chemistry and Human Health: Se-
cond Edition. 2017;1:269–84
8. Gutteridge JMC, Halliwell B. Antioxi-
dants: Molecules, medicines, and
myths. Biochem Biophys Res Commun.
2010;393(4):561–4.
9. Porra RJ, Thompson WA, Kriedemann PE.
Determination of accurate extinction co-
efficients and simultaneous equations for
assaying chlorophylls a and b extracted
with four different solvents: verification
of the concentration of chlorophyll stan-
dards by atomic absorption spectrosco-
py. Bi-ochimica et Biophysica Acta (BBA)
- Bioenergetics. 1989;975(3):384–94
10. de la Paz N, Fernández M, López O, Gar-
cia C, Nogueira A, Torres L, et al. Spray
drying of chitosan acid salts: Process de-
velopment, scaling up and physicochemi-
cal material characterization. Mar Drugs.
2021;19(6).
11. Bobo-García G, Davidov-Pardo G, Arroqui
C, Vírseda P, Marín-Arroyo MR, Navarro
M. Intra-laboratory validation of micro-
plate methods for total phenolic content
and antioxidant activity on polyphenolic
extracts, and comparison with conven-
tional spectrophotometric methods. J Sci
Food Agric. 2015;95(1):204–9.
12. Cao Z, Wang Z, Shang Z, Zhao J. Classifi-
cation and identification of Rhodobryum
roseum Limpr. and its adulterants based
on fourier-transform infrared spectrosco-
py (FTIR) and chemometrics. PLoS One.
2017;12(2):e0172359.
13. Okur İ, Baltacıoğlu C, Ağçam E, Balta-
cıoğlu H, Alpas H. Evaluation of the Effect
of Different Extraction Techniques on
Sour Cherry Pomace Phenolic Content
and Antioxidant Activity and Determi-
nation of Phenolic Compounds by FTIR
and HPLC. Waste Biomass Valorization.
2019;10(12):3545–55
14. Patle TK, Shrivas K, Kurrey R, Upadhyay
S, Jangde R, Chauhan R. Phytochemical
screening and determination of pheno-
lics and flavonoids in Dillenia pentagy-
na using UV–vis and FTIR spec-troscopy.
Spectrochim Acta A Mol Biomol Spec-
trosc. 2020;242:118717.
15. Dirar AI, Alsaadi DHM, Wada M, Moha-
med MA, Watanabe T, Devkota HP. Effects
of extraction solvents on total phenolic
and flavonoid contents and biological ac-
tivities of extracts from Sudanese medi-
cinal plants. South African Journal of Bo-
tany. 2019;120:261–7.
16. Chang H, Kao MJ, Chen CH, Chen CH,
Cho KC, Lai XR. Characterization of Natu-
ral Dye Extracted from Wormwood and
Purple Cabbage for Dye-Sensitized Solar
Cells. International Journal of Photoener-
gy. 2013;2013.
17. Coates J. Interpretation of Infrared Spec-
tra, A Practical Approach. In: Encyclope-
dia of Analytical Chemistry [Internet].
R.A. Meyers and M.L. McKelvy; 2006. ht-
tps://doi.org/10.1002/9780470027318.
a5606