Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro
Resumen
El objetivo de la investigación fue evaluar si el impregnado de la madera con sales de boro reduce su higroscopicidad y mejora su estabilidad dimensional. En probetas de pequeñas dimensiones de madera de Spathodea campanulata, Fraxinus americana y Albizia plurijuga se aplicó un tratamiento caliente-frío de sales de boro con una concentración de 3%. Se realizaron pruebas de higroscopía y tanto antes como después del impregnado con sales de boro, se analizó la densidad básica, contenido de humedad, higroexpansiones radial, tangencial, longitudinal y volumétrica, puntos de saturación de la fibra, coeficientes de higroexpansión, índice de antiexpansión y relación de anisotropía. Después del baño, las características higroscópicas se modificaron según las especies y las direcciones observadas. El tratamiento mejora la estabilidad dimensional de S. campanulata en 63%, de F. americana en 21% y para A. plurijuga en 18%. Es recomendable investigar la influencia de las características anatómicas sobre las propiedades higroscópicas de estas especies.Descargas
Citas
American Wood-Preservers’ Association (AWPA). (2014). P5-07 Standard for Waterborne Preservatives. American Wood-Preservers’ Association. Chicago, United States.
Ajuziogu, G. C., Amujiri, A. N., Njoku, E. U., Ozokolie, C. B., y Ojua, E. O. (2020). Determination of swelling and dimensional stability of some nigerian timber species. Annual Research & Review in Biology, 35(1), 24-29. DOI: 10.9734/ARRB/2020/v35i130177
Ávila, L. E., y Herrera, M. A. (2012). Efecto de los extraíbles en tres propiedades físicas de la madera de Enterolobium cyclocarpum procedente de Michoacán, México. Bosque, 33(2), 227-232. DOI: 10.4067/S0717-92002012000200013
Ayrilmis, N. (2013). Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites. Composites: Part B, 44, 745-749. DOI: 10.1016/j.compositesb.2012.04.002
Alfaro Pérez, J. D. (2013). Estudio de retención y penetración de tres preservantes comerciales en nueve especies maderables presentes en Costa Rica. Ingeniería, 23(1), 107-119. DOI: 10.15517/ring.v23i1.9825
Badel, E., Bakour, R., y Perré, P. (2006). Investigation of the relationships between anatomical pattern, density and local swelling of oak wood. IAWA Journal 27(1), 55-71. DOI: 10.1163/22941932-90000137
Berry, S. L., y Roderick, M. L. (2005). Plant-water relations and the fibre saturation point. New Phytologist, 168, 25-37. DOI: 10.1111/j.1469-8137.2005.01528.x
Berrocal, A., Muñoz, F., y González, G. (2004). Ensayo de penetrabilidad de dos preservantes a base de boro en madera de melina (Gmelina arborea) crecida en Costa Rica. Kurú: Revista Forestal, 1(3), 1-12.
Caldeira, F. (2010). Boron in Wood Preservation. A Review in its Physico-Chemical Aspects. Silva Lusitana, 18(2), 179-196.
Chiniforush, A. A., Akbarnezhad, A., Valipour, H., y Malekmohammadi, S. (2019). Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials, 207, 70-83. DOI: 10.1016/j.conbuildmat.2019.02.114
Dubey, M. K., Pang, S., y Walker, J. (2011). Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. European Journal of Wood Products, 69, 255-262. DOI: 10.1007/s00107-010-0431-0
Derome, D., Zhang, C., Chen, M., y Carmeliet, J. (2018). Understanding swelling of wood through multiscale modeling. 7th International Building Physics Conference. Healthy, Intelligent and Resilient Buildings and Urban Environments. Syracuse, NY, USA. DOI: 10.14305/ibpc.2018.be-9.06
Engelund, E. T., Thygesen, L. G., Svensson, S., y Hill, C. A. S. (2013). A critical discussion of the physics of wood–water interactions. Wood Science and Technology, 47(1), 141-161. DOI: 10.1007/s00226-012-0514-7
Esteves, B. M., y Pereira, H. M. (2009). Wood modification by heat treatment: a review. BioResources, 4(1), 370-404. DOI: 10.15376/BIORES.4.1.370-404
Fredriksson, M. (2019). On Wood-Water Interactions in the Over-Hygroscopic Moisture Range-Mechanisms, Methods, and Influence of Wood Modification. Forests, 10(9), 1-16. DOI: 10.3390/f10090779
Fu, Z., Zhou, Y., Gao, X., Liu, H., y Zhou, F. (2019). Changes of water related properties in radiata pine wood due to heat treatment. Construction and Building Materials, 227, 116692. DOI: 10.1016/j.conbuildmat.2019.116692
Fuentes-Salinas, M. (2000). Estimación del punto de saturación de la fibra (PSF) de las maderas. Revista Chapingo Serie Ciencia Forestales y del Ambiente, 6(1), 79-81.
Fuentes-Talavera, F. J., Silva-Guzmán, J. A., Rodríguez-Anda, R., Sanjuán-Dueñas, R., y Richter, H. (2014). Perfil de estabilidad dimensional de las maderas primavera y rosa morada. Revista Mexicana de Ciencias Forestales, 5(24), 56-68. DOI: 0.29298/rmcf.v5i24.319
Gérardin, P. (2016). New alternatives for wood preservation based on thermal and chemical modification of wood. A review. Annals of Forest Science, 73(3), 559-570. DOI: 10.1007/s13595-015-0531-4
Gereke, T., y Niemz, P. (2010). Moisture-induced stresses in spruce cross-laminates. Engineering Structures, 32(2), 600-606. DOI: 0.1016/j.engstruct.2009.11.006
Giridhar, B. N., Pandey, K. K., Prasad, B.E., Bisht, S.S., y Vagdevi, H.M. (2017). Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas. Ciencia y Tecnología, 19(1), 15-20. DOI: 0.4067/S0718-221X2017005000002
González-Laredo, R. F., Rosales-Castro, M., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., y Karchesy, J. J. (2015). Wood preservation using natural products. Madera y Bosques, 21, 63-76. DOI: 10.21829/myb.2015.210427
He, Z., Qian, J., Qu, L., Yan, N., y Yi, S. (2019). Effects of Tung oil treatment on wood hygroscopicity, dimensional stability and thermostability. Industrial Crops & Products, 140, 111647. DOI: 10.1016/j.indcrop.2019.111647
Hernández, R. E. (2007). Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Material Science and Engineering, 2, 45-53. DOI: 10.1080/17480270701538425
Islam, Md. S., Hamdan, S., Rusop, M., Rahman, Md. R., Ahmed, A. S., y Mohd Idrus, M. A. M. (2012). Dimensional stability and water repellent efficiency measurement of chemical modified tropical light hardwood. BioResources, 7(1), 1221-1231. DOI: 10.15376/BIORES.7.1.1221-1231
Jiang, J., Li, J., y Gao, Q. (2015). Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Construction and Building Materials, 75, 74-81. DOI: 10.1016/j.conbuildmat.2014.10.037
Joffre, T., Isaksson, P., Dumont, P. J. J., Rolland du Roscoat, S., Sticko, S., Orgéas, L. y Gamstedt, E. K. (2016). A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 56, 723-733. DOI: 10.1007/s11340-015-0119-9
Kartal, S. N., Hwang, W. J., y Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood. Journal of Wood Science, 53, 454-457. DOI: 10.1007/s10086-007-0877-9
Kocaefe, D., Huang, X., y Kocaefe, Y. (2015). Dimensional Stabilization of Wood. Current Forestry Reports, 1, 151-161. DOI: 10.1007/s40725-015-0017-5
Koman, S., y Feher, S. (2015). Basic density of hardwoods depending on age and site. Wood Research, 60(6), 907-912.
Kotlyarova, I. A., y Stepina, I. V. (2018). Decrease in swelling capacity of pine wood modified with aminoborates. IOP Conference Series Materials Science and Engineering, 463(2), 022007. DOI: 10.1088/1757-899X/463/2/022007
Koumbi-Mounanga, T., Morris, P. I., Lee, M. J., Saadat, N. M., Leblon, B., y Cooper, P. A. (2015). Prediction and evaluation of borate distribution in Eastern black spruce (Picea mariana var. mariana) wood products. Wood Science and Technology, 49(3), 457-473. DOI: 10.1007/s00226-015-0714-z
Laine. L., Belt, T., Rautkari, L., Ramsay, J., Hill, C. A. S., y Hughes, M. (2013). Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. Journal of Materials Science, 48, 8530-8538. DOI: 10.1007/s10853-013-7671-4
Lahtela, V., Hämäläinen, K., y Kärki, T. (2014). The effects of preservatives on the properties of wood after modification (Review paper). Baltic Forestry, 20(1), 189-203.
Lesar, B., Gorišek, Z., y Humar, M. (2009). Sorption Properties of Wood Impregnated with Boron Compounds, Sodium Chloride and Glucose. Drying Technology, 27, 94-102. DOI: 10.1080/07373930802565947
Lesar, B., Straže, A., y Humar, M. (2011). Sorption Properties of Wood Impregnated with Aqueous Solution of Boric Acid and Montan Wax Emulsion. Journal of Applied Polymer Science, 120, 1337-1345. DOI: 10.1002/app.33196
Moya, R., y Berrocal, A. (2015). Evaluation of biodeterioration and the dynamic modulus of elasticity of wood in ten fast-growing tropical species in Costa Rica exposed to field testing. Wood Research, 60(3), 359-374.
Murata, K., Watanabe, Y., y Nakano, T. (2013). Effect of Thermal Treatment on Fracture Properties and Adsorption Properties of Spruce Wood. Materials, 6, 4186-4197. DOI: 10.3390/ma6094186
Nakano, T. (2003). Effects of Cell Structure on Water Sorption for Wood. Holzforschung, 57, 213-218. DOI: 10.1515/HF.2003.031
Neagu, R.C., Gamstedt, E.K., y Lindstrm, M. (2005). Influence of wood–fibre hygroexpansion on the dimensional instability of fibre mats and composites. Composites Part A, Applied Science and Manufacturing, 36(6), 772-788. DOI: 10.1016/j.compositesa.2004.10.023
Nopens, M., Riegler, M., Hansmann, C., y Krause, A. (2019). Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 9, 1-11. DOI : 10.1038/s41598-019-46381-8
Obounou-Akong, F., Gérardin, P., Thévenon, M. F., y Gérardin-Charbonnier, C. (2015). Hydrogel-based boron salt formulations for wood preservation. Wood Science and Technology, 49(3), 443-456. DOI: 10.1007/s00226-015-0701-4
O´Leary, P., y Hodges, P. A. (2001). The relationship between full penetration uptake and swelling of different fluids. Wood Science and Technology, 35(3), 217-227. DOI: 0.1007/s002260100096
Ohmae, K., Minato, K., y Norimoto, M. (2002). The Analysis of Dimensional Changes Due to Chemical Treatments and Water Soaking for Hinoki (Chamaecyparis obtusa) Wood. Holzforschung, 56, 98-102. DOI: 10.1515/HF.2002.016
Obanda, D. N., Shupe, T. F., y Barnes, H. M. (2008). Reducing leaching of boron-based wood preservatives. A review of research. Bioresource Technology, 99(15), 7312-7322. DOI: 10.1016/j.biortech.2007.12.077
Patera, A., Derome, D., Griffa, M., y Carmeliet, J. (2013). Hysteresis in swelling and in sorption of wood tissue. Journal of Structural Biology, 182, 226-234. DOI: 0.1016/j.jsb.2013.03.003
Pereira Baraúna, E. E., Mota Nunes, A., Cabral Moulin, J., Campos Monteiro, T., Chaves Arantes, M. D., y Benigno Paes, J. (2017). Influence of boron compounds on the physical properties of Eucalyptus sp wood. Scientia forestalis, 45(113), 197-204.
Perré, P. (2002). Wood as a multi-scale porous medium: observation, experiment, and modelling. First Intern. Conf. European Soc. for Wood Mechanics (selected and reviewed papers), EPFL, Lausanne, Switzerland.
Petr, P., y Aleš, D. (2014). Moisture absorption and dimensional stability of poplar wood impregnated with sucrose and sodium chloride. Maderas. Ciencia y tecnología, 16(3), 299-311. DOI: 10.4067/S0718-221X2014005000023
Qian Y., Olov, K., Sheikh, A. A., y Moren, T. (2013). Dimensional stability and water repellency of European aspen improved by oxidized carbohydrates. BioResources, 8(1), 487-498. DOI: 10.15376/biores.8.1.487-498
Qian, J., He, Z., Li, J., Wang, Z., Qu, L., y Yi, S. (2018). Effect of wax and dimethyl silicone oil pretreatment on wood hygroscopicity, chemical components, and dimensional stability. BioResources, 13(3), 6265-6279.
Qian, J., Li, J., Wang, Z., Qu, L., Ding, Y., Yi, S., y He, Z. (2019). Effects of wax and dimethyl silicone oil mixed impregnation on dimensional stability of two hardwoods. Wood Research, 64 (1), 165-176.
Rafsanjani, A., Derome, D., Wittel, F. K., y Carmeliet, J. (2012). Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Composites Science and Technology, 72(6), 744-751. DOI: 10.1016/j.compscitech.2012.02.001
Rafsanjani, A. Stiefel, M., Jefimovs, K., Mokso, R., Derome, D., y CarmelietJ. (2014). Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. Journal of The Royal Society Interface, 11, 20140126. DOI: 10.1098/rsif.2014.0126
Ramos, A. M., Caldeira J. F., y Botelho, C. (2006). Boron fixation in wood: studies of fixation mechanisms using model compounds and maritime pine. Holz Roh Werkst, 64, 445-450. DOI: 10.1007/s00107-006-0139-3
Repellin, V., y Guyonnet, R. (2005). Evaluation of heat treated wood swelling by differential scanning calorimetry in relation with chemical composition. Holzforschung, 59(1), 28-34. DOI: 10.1515/HF.2005.005
Sahin, H. T. (2010). Experimental determination of the anisotropic swelling and water sorption properties of chestnut wood. Wood Research, 55 (1), 33-40.
Sandberg, D., Kutnar, A., y Mantanis, G. (2017). Wood modification technologies. A review. Forest, 10, 895-908. DOI: 10.3832/ifor2380-010
Sargent, R. (2019). Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65, 36-47. DOI: 10.1186/s10086-019-1817-1
Shukla, S. R., y Kamdem, D. P. (2010). Dimensional stability of nine tropical hardwoods from Cameroon. Journal of Tropical Forest Science, 22(4), 389-396.
Silva Guzmán, J. A., Fuentes Talavera, F. J., Rodríguez Anda, R., Torres Andrade, P. A., Lomelí Ramírez, M. A., Ramos Quirarte, J., Waitkus, C., y Richter, H. G. (2010). Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas. Comisión Nacional Forestal, México.
Silva, C., Branco, J. M., Camões, A., y Lourenço, P. B. (2014). Dimensional variation of three softwood due to hygroscopic behavior. Construction and Building Materials, 59, 25-31. DOI: 10.1016/j.conbuildmat.2014.02.037
Simsek, H., Baysal, E., Yilmaz, M., y Culha, F. (2013). Some mechanical properties of wood impregnated with environmentally-friendly boron and copper based chemicals. Wood Research, 58(3), 495-504.
Simsek, H., y Baysal, E. (2015). Some physical and mechanical properties of borate-treated oriental beech wood. Drvna Industrija, 66(2), 97-103. DOI: 10.5552/drind.2015.1356
Soltani, M., Nafaji, A., Yousefian, S., Naji, H. R., y Bakar, E. S. (2013). Water repellent effect and dimension stability of beech wood impregnated with nano-zinc oxide. BioResources, 8(4), 6280-6287. DOI: 10.15376/biores.8.4.6280-6287
Sotomayor Castellanos, J. R., y Ávila Calderón, L. E. A. (2019). Retención y penetración de sales de boro en tres maderas angiospermas: Spathodea campanulata, Fraxinus americana y Albizia plurijuga. Ciencia y Tecnología, 12(2), 23-31. DOI: 10.18779/cyt.v12i2.323
Sotomayor Castellanos, J. R., y Correa Jurado, S. (2016). Retención de sales de boro en la madera y su efecto en el módulo de elasticidad dinámico. Revista Científica, 24, 90-99. DOI: 0.14483/10.14483/udistrital.jour.RC.2016.24.a9
Sotomayor Castellanos, J. R., y Villaseñor Aguilar, J. M. (2016). Retención de sales de boro en tres maderas mexicanas. Evaluación mecánica por vibraciones. Revista de Ciencia y Tecnología. Suplemento No. 1 Ingeniería y Tecnología, 40-46.
Sotomayor Castellanos, J. R., Giraldo Forero, M. P., Gené Sera, J., Correal Mòdol, E., y Vilches Casals, M. (2018). Efecto de sales de boro en la densidad y en el módulo de elasticidad de tres maderas mexicanas. Revista Ingeniería, 28(2), 31-44. DOI: 10.15517/ri.v28i2.31608
Tamarit-Urias, J. C., y Fuentes-Salinas, M. (2003). Parámetros de humedad de 63 maderas latifoliadas mexicanas en función de su densidad básica. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 9(2), 155-164.
Temiz, A., Alfredsen, G., Eikenes, M., y Terziev, N. (2008). Decay resistance of wood treated with boric acid and tall oil derivates. Bioresource Technology, 99, 2102-2106. DOI: 10.1016/j.biortech.2007.08.052
Thévenon, M. F., Tondi, G., y Pizzi, A. (2010). Environmentally friendly wood preservative system based on polymerized tannin resin-boric acid for outdoor applications. Maderas: Ciencia y Tecnología, 12(3), 253-257. DOI: 10.4067/S0718-221X2010000300009
Tippner, J., Hrivnák, J., y Kloiber, M. (2016). Experimental Evaluation of Mechanical Properties of Softwood using Acoustic Methods. BioResources, 11(1), 503-518. DOI: 10.15376/biores.11.1.503-518
Torelli, N., y Gorišek, Ž. (1995). Mexican tropical hardwoods - dimensional stability. HoIz als Roh- und Werkstoff, 53, 277-280. DOI: 10.1007/s001070050090
Tsunoda, K. (2001). Preservative properties of vapor-boron-treated wood and wood-based composites. Journal of Wood Science, 47, 149-153. DOI: 10.1007/BF00780565
Tiryaki, S., Bardak, S., Aydın, A., y Nemli, G. (2016). Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas. Ciencia y tecnología, 18(3), 477-492. DOI: 10.4067/S0718-221X2016005000043
Zhang, W. (2015). Leachability of boron from trimethyl borate (TMB)/poplar wood composites prepared by solgel process. Wood Research, 60(3), 471-476.
Derechos de autor 2021 CIENCIA UNEMI
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Los autores pueden mantener el copyright, concediendo a la revista el derecho de primera publicación. Alternativamente, los autores pueden transferir el copyright a la revista, la cual permitirá a los autores el uso no-comercial del trabajo, incluyendo el derecho a colocarlo en un archivo de acceso libre.