Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro

Autores/as

DOI:

https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp10-25p

Palabras clave:

densidad básica, contenido de humedad, punto de saturación de la fibra, coeficiente de higroexpansión, índice de antihigroexpansión, anisotropía

Resumen

El objetivo de la investigación fue evaluar si el impregnado de la madera con sales de boro reduce su higroscopicidad y mejora su estabilidad dimensional. En probetas de pequeñas dimensiones de madera de Spathodea campanulata, Fraxinus americana y Albizia plurijuga se aplicó un tratamiento caliente-frío de sales de boro con una concentración de 3%. Se realizaron pruebas de higroscopía y tanto antes como después del impregnado con sales de boro, se analizó la densidad básica, contenido de humedad, higroexpansiones radial, tangencial, longitudinal y volumétrica, puntos de saturación de la fibra, coeficientes de higroexpansión, índice de antiexpansión y relación de anisotropía. Después del baño, las características higroscópicas se modificaron según las especies y las direcciones observadas. El tratamiento mejora la estabilidad dimensional de S. campanulata en 63%, de F. americana en 21% y para A. plurijuga en 18%. Es recomendable investigar la influencia de las características anatómicas sobre las propiedades higroscópicas de estas especies.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Javier Sotomayor-Castellanos, Universidad Michoacana de San Nicolás de Hidalgo

    Profesor titular

  • Luz Ávila-Calderón, Universidad Michoacana de San Nicolás de Hidalgo

    Profesora titular

  • Mario Fuentes-Salinas, Universidad Autónoma Chapingo

    Profesor titular

Referencias

American Wood-Preservers’ Association (AWPA). (2014). P5-07 Standard for Waterborne Preservatives. American Wood-Preservers’ Association. Chicago, United States.

Ajuziogu, G. C., Amujiri, A. N., Njoku, E. U., Ozokolie, C. B., y Ojua, E. O. (2020). Determination of swelling and dimensional stability of some nigerian timber species. Annual Research & Review in Biology, 35(1), 24-29. DOI: 10.9734/ARRB/2020/v35i130177

Ávila, L. E., y Herrera, M. A. (2012). Efecto de los extraíbles en tres propiedades físicas de la madera de Enterolobium cyclocarpum procedente de Michoacán, México. Bosque, 33(2), 227-232. DOI: 10.4067/S0717-92002012000200013

Ayrilmis, N. (2013). Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites. Composites: Part B, 44, 745-749. DOI: 10.1016/j.compositesb.2012.04.002

Alfaro Pérez, J. D. (2013). Estudio de retención y penetración de tres preservantes comerciales en nueve especies maderables presentes en Costa Rica. Ingeniería, 23(1), 107-119. DOI: 10.15517/ring.v23i1.9825

Badel, E., Bakour, R., y Perré, P. (2006). Investigation of the relationships between anatomical pattern, density and local swelling of oak wood. IAWA Journal 27(1), 55-71. DOI: 10.1163/22941932-90000137

Berry, S. L., y Roderick, M. L. (2005). Plant-water relations and the fibre saturation point. New Phytologist, 168, 25-37. DOI: 10.1111/j.1469-8137.2005.01528.x

Berrocal, A., Muñoz, F., y González, G. (2004). Ensayo de penetrabilidad de dos preservantes a base de boro en madera de melina (Gmelina arborea) crecida en Costa Rica. Kurú: Revista Forestal, 1(3), 1-12.

Caldeira, F. (2010). Boron in Wood Preservation. A Review in its Physico-Chemical Aspects. Silva Lusitana, 18(2), 179-196.

Chiniforush, A. A., Akbarnezhad, A., Valipour, H., y Malekmohammadi, S. (2019). Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials, 207, 70-83. DOI: 10.1016/j.conbuildmat.2019.02.114

Dubey, M. K., Pang, S., y Walker, J. (2011). Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata. European Journal of Wood Products, 69, 255-262. DOI: 10.1007/s00107-010-0431-0

Derome, D., Zhang, C., Chen, M., y Carmeliet, J. (2018). Understanding swelling of wood through multiscale modeling. 7th International Building Physics Conference. Healthy, Intelligent and Resilient Buildings and Urban Environments. Syracuse, NY, USA. DOI: 10.14305/ibpc.2018.be-9.06

Engelund, E. T., Thygesen, L. G., Svensson, S., y Hill, C. A. S. (2013). A critical discussion of the physics of wood–water interactions. Wood Science and Technology, 47(1), 141-161. DOI: 10.1007/s00226-012-0514-7

Esteves, B. M., y Pereira, H. M. (2009). Wood modification by heat treatment: a review. BioResources, 4(1), 370-404. DOI: 10.15376/BIORES.4.1.370-404

Fredriksson, M. (2019). On Wood-Water Interactions in the Over-Hygroscopic Moisture Range-Mechanisms, Methods, and Influence of Wood Modification. Forests, 10(9), 1-16. DOI: 10.3390/f10090779

Fu, Z., Zhou, Y., Gao, X., Liu, H., y Zhou, F. (2019). Changes of water related properties in radiata pine wood due to heat treatment. Construction and Building Materials, 227, 116692. DOI: 10.1016/j.conbuildmat.2019.116692

Fuentes-Salinas, M. (2000). Estimación del punto de saturación de la fibra (PSF) de las maderas. Revista Chapingo Serie Ciencia Forestales y del Ambiente, 6(1), 79-81.

Fuentes-Talavera, F. J., Silva-Guzmán, J. A., Rodríguez-Anda, R., Sanjuán-Dueñas, R., y Richter, H. (2014). Perfil de estabilidad dimensional de las maderas primavera y rosa morada. Revista Mexicana de Ciencias Forestales, 5(24), 56-68. DOI: 0.29298/rmcf.v5i24.319

Gérardin, P. (2016). New alternatives for wood preservation based on thermal and chemical modification of wood. A review. Annals of Forest Science, 73(3), 559-570. DOI: 10.1007/s13595-015-0531-4

Gereke, T., y Niemz, P. (2010). Moisture-induced stresses in spruce cross-laminates. Engineering Structures, 32(2), 600-606. DOI: 0.1016/j.engstruct.2009.11.006

Giridhar, B. N., Pandey, K. K., Prasad, B.E., Bisht, S.S., y Vagdevi, H.M. (2017). Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas. Ciencia y Tecnología, 19(1), 15-20. DOI: 0.4067/S0718-221X2017005000002

González-Laredo, R. F., Rosales-Castro, M., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., y Karchesy, J. J. (2015). Wood preservation using natural products. Madera y Bosques, 21, 63-76. DOI: 10.21829/myb.2015.210427

He, Z., Qian, J., Qu, L., Yan, N., y Yi, S. (2019). Effects of Tung oil treatment on wood hygroscopicity, dimensional stability and thermostability. Industrial Crops & Products, 140, 111647. DOI: 10.1016/j.indcrop.2019.111647

Hernández, R. E. (2007). Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Material Science and Engineering, 2, 45-53. DOI: 10.1080/17480270701538425

Islam, Md. S., Hamdan, S., Rusop, M., Rahman, Md. R., Ahmed, A. S., y Mohd Idrus, M. A. M. (2012). Dimensional stability and water repellent efficiency measurement of chemical modified tropical light hardwood. BioResources, 7(1), 1221-1231. DOI: 10.15376/BIORES.7.1.1221-1231

Jiang, J., Li, J., y Gao, Q. (2015). Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Construction and Building Materials, 75, 74-81. DOI: 10.1016/j.conbuildmat.2014.10.037

Joffre, T., Isaksson, P., Dumont, P. J. J., Rolland du Roscoat, S., Sticko, S., Orgéas, L. y Gamstedt, E. K. (2016). A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 56, 723-733. DOI: 10.1007/s11340-015-0119-9

Kartal, S. N., Hwang, W. J., y Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood. Journal of Wood Science, 53, 454-457. DOI: 10.1007/s10086-007-0877-9

Kocaefe, D., Huang, X., y Kocaefe, Y. (2015). Dimensional Stabilization of Wood. Current Forestry Reports, 1, 151-161. DOI: 10.1007/s40725-015-0017-5

Koman, S., y Feher, S. (2015). Basic density of hardwoods depending on age and site. Wood Research, 60(6), 907-912.

Kotlyarova, I. A., y Stepina, I. V. (2018). Decrease in swelling capacity of pine wood modified with aminoborates. IOP Conference Series Materials Science and Engineering, 463(2), 022007. DOI: 10.1088/1757-899X/463/2/022007

Koumbi-Mounanga, T., Morris, P. I., Lee, M. J., Saadat, N. M., Leblon, B., y Cooper, P. A. (2015). Prediction and evaluation of borate distribution in Eastern black spruce (Picea mariana var. mariana) wood products. Wood Science and Technology, 49(3), 457-473. DOI: 10.1007/s00226-015-0714-z

Laine. L., Belt, T., Rautkari, L., Ramsay, J., Hill, C. A. S., y Hughes, M. (2013). Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. Journal of Materials Science, 48, 8530-8538. DOI: 10.1007/s10853-013-7671-4

Lahtela, V., Hämäläinen, K., y Kärki, T. (2014). The effects of preservatives on the properties of wood after modification (Review paper). Baltic Forestry, 20(1), 189-203.

Lesar, B., Gorišek, Z., y Humar, M. (2009). Sorption Properties of Wood Impregnated with Boron Compounds, Sodium Chloride and Glucose. Drying Technology, 27, 94-102. DOI: 10.1080/07373930802565947

Lesar, B., Straže, A., y Humar, M. (2011). Sorption Properties of Wood Impregnated with Aqueous Solution of Boric Acid and Montan Wax Emulsion. Journal of Applied Polymer Science, 120, 1337-1345. DOI: 10.1002/app.33196

Moya, R., y Berrocal, A. (2015). Evaluation of biodeterioration and the dynamic modulus of elasticity of wood in ten fast-growing tropical species in Costa Rica exposed to field testing. Wood Research, 60(3), 359-374.

Murata, K., Watanabe, Y., y Nakano, T. (2013). Effect of Thermal Treatment on Fracture Properties and Adsorption Properties of Spruce Wood. Materials, 6, 4186-4197. DOI: 10.3390/ma6094186

Nakano, T. (2003). Effects of Cell Structure on Water Sorption for Wood. Holzforschung, 57, 213-218. DOI: 10.1515/HF.2003.031

Neagu, R.C., Gamstedt, E.K., y Lindstrm, M. (2005). Influence of wood–fibre hygroexpansion on the dimensional instability of fibre mats and composites. Composites Part A, Applied Science and Manufacturing, 36(6), 772-788. DOI: 10.1016/j.compositesa.2004.10.023

Nopens, M., Riegler, M., Hansmann, C., y Krause, A. (2019). Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 9, 1-11. DOI : 10.1038/s41598-019-46381-8

Obounou-Akong, F., Gérardin, P., Thévenon, M. F., y Gérardin-Charbonnier, C. (2015). Hydrogel-based boron salt formulations for wood preservation. Wood Science and Technology, 49(3), 443-456. DOI: 10.1007/s00226-015-0701-4

O´Leary, P., y Hodges, P. A. (2001). The relationship between full penetration uptake and swelling of different fluids. Wood Science and Technology, 35(3), 217-227. DOI: 0.1007/s002260100096

Ohmae, K., Minato, K., y Norimoto, M. (2002). The Analysis of Dimensional Changes Due to Chemical Treatments and Water Soaking for Hinoki (Chamaecyparis obtusa) Wood. Holzforschung, 56, 98-102. DOI: 10.1515/HF.2002.016

Obanda, D. N., Shupe, T. F., y Barnes, H. M. (2008). Reducing leaching of boron-based wood preservatives. A review of research. Bioresource Technology, 99(15), 7312-7322. DOI: 10.1016/j.biortech.2007.12.077

Patera, A., Derome, D., Griffa, M., y Carmeliet, J. (2013). Hysteresis in swelling and in sorption of wood tissue. Journal of Structural Biology, 182, 226-234. DOI: 0.1016/j.jsb.2013.03.003

Pereira Baraúna, E. E., Mota Nunes, A., Cabral Moulin, J., Campos Monteiro, T., Chaves Arantes, M. D., y Benigno Paes, J. (2017). Influence of boron compounds on the physical properties of Eucalyptus sp wood. Scientia forestalis, 45(113), 197-204.

Perré, P. (2002). Wood as a multi-scale porous medium: observation, experiment, and modelling. First Intern. Conf. European Soc. for Wood Mechanics (selected and reviewed papers), EPFL, Lausanne, Switzerland.

Petr, P., y Aleš, D. (2014). Moisture absorption and dimensional stability of poplar wood impregnated with sucrose and sodium chloride. Maderas. Ciencia y tecnología, 16(3), 299-311. DOI: 10.4067/S0718-221X2014005000023

Qian Y., Olov, K., Sheikh, A. A., y Moren, T. (2013). Dimensional stability and water repellency of European aspen improved by oxidized carbohydrates. BioResources, 8(1), 487-498. DOI: 10.15376/biores.8.1.487-498

Qian, J., He, Z., Li, J., Wang, Z., Qu, L., y Yi, S. (2018). Effect of wax and dimethyl silicone oil pretreatment on wood hygroscopicity, chemical components, and dimensional stability. BioResources, 13(3), 6265-6279.

Qian, J., Li, J., Wang, Z., Qu, L., Ding, Y., Yi, S., y He, Z. (2019). Effects of wax and dimethyl silicone oil mixed impregnation on dimensional stability of two hardwoods. Wood Research, 64 (1), 165-176.

Rafsanjani, A., Derome, D., Wittel, F. K., y Carmeliet, J. (2012). Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Composites Science and Technology, 72(6), 744-751. DOI: 10.1016/j.compscitech.2012.02.001

Rafsanjani, A. Stiefel, M., Jefimovs, K., Mokso, R., Derome, D., y CarmelietJ. (2014). Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. Journal of The Royal Society Interface, 11, 20140126. DOI: 10.1098/rsif.2014.0126

Ramos, A. M., Caldeira J. F., y Botelho, C. (2006). Boron fixation in wood: studies of fixation mechanisms using model compounds and maritime pine. Holz Roh Werkst, 64, 445-450. DOI: 10.1007/s00107-006-0139-3

Repellin, V., y Guyonnet, R. (2005). Evaluation of heat treated wood swelling by differential scanning calorimetry in relation with chemical composition. Holzforschung, 59(1), 28-34. DOI: 10.1515/HF.2005.005

Sahin, H. T. (2010). Experimental determination of the anisotropic swelling and water sorption properties of chestnut wood. Wood Research, 55 (1), 33-40.

Sandberg, D., Kutnar, A., y Mantanis, G. (2017). Wood modification technologies. A review. Forest, 10, 895-908. DOI: 10.3832/ifor2380-010

Sargent, R. (2019). Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65, 36-47. DOI: 10.1186/s10086-019-1817-1

Shukla, S. R., y Kamdem, D. P. (2010). Dimensional stability of nine tropical hardwoods from Cameroon. Journal of Tropical Forest Science, 22(4), 389-396.

Silva Guzmán, J. A., Fuentes Talavera, F. J., Rodríguez Anda, R., Torres Andrade, P. A., Lomelí Ramírez, M. A., Ramos Quirarte, J., Waitkus, C., y Richter, H. G. (2010). Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas. Comisión Nacional Forestal, México.

Silva, C., Branco, J. M., Camões, A., y Lourenço, P. B. (2014). Dimensional variation of three softwood due to hygroscopic behavior. Construction and Building Materials, 59, 25-31. DOI: 10.1016/j.conbuildmat.2014.02.037

Simsek, H., Baysal, E., Yilmaz, M., y Culha, F. (2013). Some mechanical properties of wood impregnated with environmentally-friendly boron and copper based chemicals. Wood Research, 58(3), 495-504.

Simsek, H., y Baysal, E. (2015). Some physical and mechanical properties of borate-treated oriental beech wood. Drvna Industrija, 66(2), 97-103. DOI: 10.5552/drind.2015.1356

Soltani, M., Nafaji, A., Yousefian, S., Naji, H. R., y Bakar, E. S. (2013). Water repellent effect and dimension stability of beech wood impregnated with nano-zinc oxide. BioResources, 8(4), 6280-6287. DOI: 10.15376/biores.8.4.6280-6287

Sotomayor Castellanos, J. R., y Ávila Calderón, L. E. A. (2019). Retención y penetración de sales de boro en tres maderas angiospermas: Spathodea campanulata, Fraxinus americana y Albizia plurijuga. Ciencia y Tecnología, 12(2), 23-31. DOI: 10.18779/cyt.v12i2.323

Sotomayor Castellanos, J. R., y Correa Jurado, S. (2016). Retención de sales de boro en la madera y su efecto en el módulo de elasticidad dinámico. Revista Científica, 24, 90-99. DOI: 0.14483/10.14483/udistrital.jour.RC.2016.24.a9

Sotomayor Castellanos, J. R., y Villaseñor Aguilar, J. M. (2016). Retención de sales de boro en tres maderas mexicanas. Evaluación mecánica por vibraciones. Revista de Ciencia y Tecnología. Suplemento No. 1 Ingeniería y Tecnología, 40-46.

Sotomayor Castellanos, J. R., Giraldo Forero, M. P., Gené Sera, J., Correal Mòdol, E., y Vilches Casals, M. (2018). Efecto de sales de boro en la densidad y en el módulo de elasticidad de tres maderas mexicanas. Revista Ingeniería, 28(2), 31-44. DOI: 10.15517/ri.v28i2.31608

Tamarit-Urias, J. C., y Fuentes-Salinas, M. (2003). Parámetros de humedad de 63 maderas latifoliadas mexicanas en función de su densidad básica. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 9(2), 155-164.

Temiz, A., Alfredsen, G., Eikenes, M., y Terziev, N. (2008). Decay resistance of wood treated with boric acid and tall oil derivates. Bioresource Technology, 99, 2102-2106. DOI: 10.1016/j.biortech.2007.08.052

Thévenon, M. F., Tondi, G., y Pizzi, A. (2010). Environmentally friendly wood preservative system based on polymerized tannin resin-boric acid for outdoor applications. Maderas: Ciencia y Tecnología, 12(3), 253-257. DOI: 10.4067/S0718-221X2010000300009

Tippner, J., Hrivnák, J., y Kloiber, M. (2016). Experimental Evaluation of Mechanical Properties of Softwood using Acoustic Methods. BioResources, 11(1), 503-518. DOI: 10.15376/biores.11.1.503-518

Torelli, N., y Gorišek, Ž. (1995). Mexican tropical hardwoods - dimensional stability. HoIz als Roh- und Werkstoff, 53, 277-280. DOI: 10.1007/s001070050090

Tsunoda, K. (2001). Preservative properties of vapor-boron-treated wood and wood-based composites. Journal of Wood Science, 47, 149-153. DOI: 10.1007/BF00780565

Tiryaki, S., Bardak, S., Aydın, A., y Nemli, G. (2016). Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas. Ciencia y tecnología, 18(3), 477-492. DOI: 10.4067/S0718-221X2016005000043

Zhang, W. (2015). Leachability of boron from trimethyl borate (TMB)/poplar wood composites prepared by solgel process. Wood Research, 60(3), 471-476.

Publicado

2021-01-15

Número

Sección

Artículos Científicos

Cómo citar

Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro. (2021). CIENCIA UNEMI, 14(35), 10-25. https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp10-25p