Size distribution of asphaltene aggregates by image analysis and its influence on the efficiency of dispersant products

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp1-13p

Keywords:

Precipitation, asphaltene dispersant, aggregates

Abstract

The precipitation of asphaltenes in oil is a well studied phenomenon, however, little is known about the effect of the size of these aggregates on the efficiency of dispersant products. The research was based on determining the size distribution of asphaltene aggregates by image analysis and the influence of the average diameter on the efficiency of dispersant products. The formation of aggregates in each sample was determined by applying n-heptane and optical microscopy, as well as the point of dispersion with three dispersant products, and then calculating the index of instability. Microphotographs were taken of the aggregates and the average diameter was calculated by the equivalent circle method. The particle size distribution and the correlation between the average diameter and the efficiency of the dispersant products were obtained with the statistical package Statgraphics Centurion XVI. Aggregate size is not distributed normally and the relationship between the instability index and average diameter was very strong, inverse, and significant for each of the products, with a 95% confidence level.

Downloads

Download data is not yet available.

References

Agimelen, O.S., Hamilton, P., Haley, I., Nordon, A., Vasile, M., Sefcik, J., & Mulholland, A.J. (2015). Estimation of particle size distribution and aspect ratio of non-spherical particles from chord length distribution. Chemical Engineering Science, 123, 629-640. doi: 10.1016/j.ces.2014.11.014.

Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek. J., Kabir, S., Jamaluddin, A. et al. (2007). Los asfaltenos: problemáticos pero ricos en potencial. USA: Oilfield Review.

Alomair, O., Jumaa, M., Alkoriem, A., & Hamed, M. (2016). Heavy oil viscosity and density prediction at normal and elevated temperatures. Journal of Petroleum Exploration and Production Technology, 6, 253-263. doi: 10.1007/s13202-015-0184-8.

Ariza, E., Gutiérrez, J.F., Bolaño, A.A., & Santafé, E.R. (2012). Análisis de la simulación de precipitación de asfaltenos en el crudo del campo colorado. Revista Fuentes: El Reventón Energético, 10(1), 55-62.

ASTM D287. (2012). Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). West Conshohocken, PA, USA: ASTM International.

ASTM D2196. (2015). Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer. West Conshohocken, PA, USA: ASTM International.

ASTM E100. (2005). Standard Specification for ASTM Hydrometers. West Conshohocken, PA, USA: ASTM International.

Bagheri, G.H., Bonadonna, C., Manzella, I., & Vonlanthen, P. (2015). On the characterization of size and shape of irregular particles. Powder Technology, 270, 141-153. doi: 10.1016/j.powtec.2014.10.01.

Barberii, E.E. (1998). El pozo ilustrado. Caracas: FONCIED.

Delgado, J. (2006). Asfaltenos, composición, agregación, precipitación. Mérida, Venezuela: Universidad de los Andes.

Durán, J., Casas, Y., Xiang, L., Zhang, L., Zeng, H., & Yarranton, H.W. (2018). The Nature of Asphaltene Aggregates. Energy & Fuels, 33(5), 3694-3710. doi: 10.1021/acs.energyfuels.8b03057.

Ferworn, K.A., Svrcek, W.Y., & Mehrotra, A.K. (1993). Measurement of Asphaltene Particle Size Distributions in Crude Oils Diluted with n-Heptane. Industrial & Engineering Chemistry Research, 32, 955-959.

García, C., & Moreno, S. (2005). Diseño de un equipo para la medición de la precipitación de asfaltenos y la evaluación de productos químicos inhibidores / dispersantes en condiciones de operación (tesis de pregrado). Universidad de Oriente, Venezuela.

García-Jacomino, J.L., Valdés-Arencibia, R., Ruiz-Mena, L., Quintana-Puchol, R., Cruz-Crespo, A., & Alvarez-Luna, M. (2015). Uso del procesamiento de imágenes digitales para medir los parámetros morfométricos de partículas. Boletín Científico Técnico INIMET, 1, 14-27.

Hasanvand, M.Z., Behbahani, R.M., Feyzi, F., & Mousavi, S.A. (2016). The effect of asphaltene particle size and distribution on the temporal advancement of the asphaltene deposition profile in the well column. The European Physical Journal Plus, 131(5), 1-12. doi: 10.1140/epjp/i2016-16150-3.

Hasanvand, M.Z., Behbahani, R.M., Feyzi, F., & Mousavi, S.A. (2017). Asphaltene particles size and size distribution change at high pressure high temperature conditions: experimental study on a heavy oil sample. High Temperatures-High Pressures, 46, 85-99.

Honse, S.O., Ferreira, S.R., Mansur, C.R.E., & Lucas, E.F. (2012). Separation and characterization of asphaltenic subfractions. Química Nova, 35(10), 1991-1994.

Hopkins, W. (2014). A New View of Statistics. Recuperado de https://complementarytraining.net/free-will-hopkins-a-new-view-of-statistics-pdf-printout/

Ilyin, S., Arinina, M., Polyakova, M., Bondarenko, G., Konstantinov, I., Kulichikhin, V., & Malkin, A. (2016). Asphaltenes in heavy crude oil: Designation, precipitation, solutions, and effects on viscosity. Journal of Petroleum Science and Engineering, 147, 211-217. doi: 10.1016/j.petrol.2016.06.020.

Kananpanah, S., Bayat, M., & Mousavian, M.A. (2017). The evolution of heavy crude oil’s asphaltene particle size distribution by elevating temperatura. International Journal of Oil, Gas and Coal Technology, 14(3), 232-246. doi: 10.1504/ijogct.2017.082046.

Khanam, T., Syuhada Wan Ata, W.N., & Rashedi, A. (2016). Particle Size Measurement in Waste Water Influent and Effluent Using Particle Size Analyzer and Quantitative Image Analysis Technique. Advanced Materials Research, 1133, 571-575. doi: 10.4028/www.scientific.net/AMR.1133.571.

Kraiwattanawong, K., Fogler, H.S., Gharfeh, S.G., Singh, P., Thomason, W.H., & Chavadej, S. (2009). Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels, 23(3), 1575–1582. doi: 10.1021/ef800706c.

Kumara, G., Hayano, K., & Ogiwara, K. (2012). Image Analysis Techniques on Evaluation of Particle Size Distribution of Gravel. International Journal of GEOMATE, 3(1), 290-297.

León, J.A. (2013). Guía práctica laboratorio de fluidos gravedad API. Bucaramanga: Universidad Industrial de Santander

López, F., & Vásquez, C. (2012). Evaluación de la eficacia de un aceite a base de cáscaras de cítricos (Genus citrus) como dispersante del asfaltenos (tesis de pregrado). Universidad de Oriente, Venezuela.

Mansur, C.R.E., De Melo, A.R., & Lucas, E.F. (2012). Determination of Asphaltene Particle Size: Influence of Flocculant, Additive, and Temperature. Energy & Fuels, 26(8), 4988−4994. doi: 10.1021/ef300365x.

Marín, T., Marcano, S., & Febres, M. (2016). Evaluación del aceite de Jatropha curcas como aditivo dispersante de asfaltenos en un crudo del campo el Furrial, Venezuela. Ingeniería 20(2), 99-107.

Mendoza, I.I., & Aguilarte, M.F. (2014). Comparación de la dispersión de asfaltenos aplicando productos químicos a base de resina de pino (Pinus caribaea) en diésel y productos comerciales Lipesa (460 Y 562) (tesis de pregrado). Universidad de Oriente, Venezuela.

Mullins, O.C. (2011). The Asphaltenes. Annual Review of Analytical Chemistry, 4, 393-418.

Navarro, L., Álvarez, M., Grosso, J.L., & Navarro, U. (2004). Separación y caracterización de resinas y asfaltenos provenientes del crudo castilla. Evaluación de su interacción molecular. CT&F - Ciencia, Tecnología y Futuro, 2(5), 53-67.

Panuganti, S.N. (2013). Asphaltene Bahavior in Crude Oil Systems (Doctoral dissertation). Rice University, USA.

Perry, R., & Green, D. (1999). Chemical Engineers Handbook. New York: McGraw-Hill.

Prakoso, A., Punase, A., Rogel, E., Ovalles, C., Hascakir, B. (2018). Effect of Asphaltene Characteristics on Its Solubility and Overall Stability. Energy & Fuels, 32, 6482-6487. doi: 10.1021/acs.energyfuels.8b00324.

Rajagopal, K., & Silva, S.M.C. (2004). An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering. Brazilian Journal of Chemical Engineering, 21(4), 601-609.

Schroeder, S., Braun, S., Mueller, U., Sonntag, R., Jaeger, S., & Kretzer, J.P. (2019). Particle analysis of shape factors according to American Society for Testing and Materials. Journal of Biomedical Materials Research Part B, 1-9. doi: 10.1002/jbm.b.34382.

Segovia, M. (2009). Obtención de las distribuciones de tamaño de partículas en el umbral de precipitación de asfaltenos de crudos de petróleo. Influencia del uso de aditivos (tesis de pregrado). Universidad Rey Juan Carlos, España.

Shanthi, C., Porpatham, R.K., & Pappa, N. (2014). Image Analysis for Particle Size Distribution. International Journal of Engineering and Technology (IJET), 6(3), 1340-1345.

Speight, J.G. (2004). Asphaltenes, Resins and the Structure of Petroleum. Oil & Gas Science and Technology, 59(5), 467-477.

Svalova, A., Parke, N., Povey, M.J.W., & Abbott, G.D. (2017). Determination of AsphalteneCritical Nanoaggregate Concentration Region Using Ultrasound Velocity Measurements. Scientific Reports, 7(1), 16125. doi: 10.1038/s41598-017-16294-5.

Downloads

Published

2020-01-09

Issue

Section

Artículos Científicos

How to Cite

Size distribution of asphaltene aggregates by image analysis and its influence on the efficiency of dispersant products. (2020). CIENCIA UNEMI, 13(32), 1-13. https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp1-13p