Evaluation of Anacardium occidentale oil as an asphaltene flocculation inhibitor

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol13iss34.2020pp59-71p

Keywords:

Precipitation, asphaltene inhibitor, flocculation, Anacardium occidentale

Abstract

In the investigation, Anacardium occidentale seed oil (CNSL) was evaluated at laboratory level as an asphaltene flocculation inhibitor. Three mixtures of CNSL in Diesel (40, 60 and 80% V/V) were prepared and four doses (2, 4, 6 and 8 µL) were applied to 10 mL of an oil sample from El Furrial Field, Venezuela, as well as, pure diesel and oil, for a total of five products evaluated at the four doses. The response variable measured was the Asphaltene Flocculation Threshold (UF), as the volume of n-heptane applied to the oil until the formation of aggregates was observed under an optical microscope. The experimental design was factorial, with two experimental factors, Product and Dose, and a UF response variable, measured in triplicate for each product-dose combination. Factorial ANOVA and Fisher LSD test were applied with α = 0.05. It was obtained that the flocculation threshold was significantly dependent on the two factors (p < 0.05) and the presence of CNLS in the mixture produces an inhibitory effect, with a maximum efficiency of 43.6% for the product at 80% CNLS at a dose of 4 µL/10mL of oil.

Downloads

Download data is not yet available.

References

Abrahamsen, E.L. (2012). Organic flow assurance: Asphaltene dispersant/inhibitor formulation development through experimental design. Stavanger: Schlumberger Limited.

Alimohammadi, S., Zendehboudi, S., & James, L. (2019). A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel, 252, 753-791. doi: 10.1016/j.fuel.2019.03.016

Alrashidi, H., Afra, S., & Nasr-El-Din, H.A. (2019). Application of natural fatty acids as asphaltenes solvents with inhibition and dispersion effects: A mechanistic study. Journal of Petroleum Science and Engineering, 172, 724-730. doi: 10.1016/j.petrol.2018.08.066

Arriojas, D.D.J., & Marín, T.D. (2020). Análisis comparativo de la eficiencia estabilizadora de asfaltenos del aceite de cáscara de Anacardium occidentale y productos comerciales. Enfoque UTE, 11(3), 111-123. doi: 10.29019/enfoque.v11n3.643

ASTM D287. (2012). Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). USA: American Society of Testing Materials.

ASTM D2007. (2011). Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. USA: American Society of Testing Materials.

ASTM D2196. (2018). Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer. USA: American Society of Testing Materials.

ASTM D4007. (2016). Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure). USA: American Society of Testing Materials.

Ashoori, S., Sharifi, M., Masoumi, M., & Salehi, M.M. (2017). The relationship between SARA fractions and crude oil stability. Egyptian Journal of Petroleum, 26, 209-213. doi: 10.1016/j.ejpe.2016.04.002

Bacha, J., Freel, J., Gibbs, A., Gibbs, L., Hemighaus, G., Hoekman, K., Horn, J., et al. (2007). Diesel Fuels Technical Review. USA: Chevron Corporation.

Bello, Y.B., Manzano, J.R., & Marín, T.D. (2015). Análisis comparativo de la eficiencia dispersora de asfaltenos de productos a base de aceite de coco (Cocos nucifera) como componente activo y dispersantes comerciales aplicados a muestras de petróleo del Campo el Furrial, Estado Monagas, Venezuela. Revista Tecnológica ESPOL – RTE, 28(2), 51-61.

Chávez-Miyauchi, T.E., Zamudio-Rivera, L.S., Barba-López, V., Buenrostro-Gonzalez, E., & Martínez-Magadán, J.M. (2013). N-aryl amino-alcohols as stabilizers of asphaltenes. Fuel, 110, 302-309. doi: 10.1016/j.fuel.2012.10.044

Gabrienko, A.A., Martyanov, O.N., & Kazarian, S.G. (2015). Effect of Temperature and Composition on the Stability of Crude Oil Blends Studied with Chemical Imaging In Situ. Energy & Fuels, 29(11), 7114-7123. doi: 10.1021/acs.energyfuels.5b01880

García, M.D.C., & Carbognani, L. (2001). Asphaltene-Paraffin Structural Interactions. Effect on Crude Oil Stability. Energy & Fuels, 15(5), 1021-1027. doi: 10.1021/ef0100303

García-James, C., Pino, F., Marín, T., & Maharaj, U. (2012). Influence of Resin/Asphaltene Ration on Paraffin Wax Deposition in Crude Oils from Barrackpore Oilfield in Trinidad. SPE Journal, 158106, 1-12. doi: 10.2118/158106-m

Ghosh, A.K., Chaudhuri, P., Kumar, B., & Panja, S.S. (2016). Review on aggregation of asphaltene vis-a-vis spectroscopic studies. Fuel, 185, 541–554. doi: 10.1016/j.fuel.2016.08.031

Ghosh, P. (2008). Predicting the Effect of Cetane Improvers on Diesel Fuels. Energy & Fuels, 22, 1073–1079. doi: 10.1021/ef0701079

Goual, L., Sedghi, M., Wang, X., & Zhu, Z. (2014). Asphaltene Aggregation and Impact of Alkylphenols. Langmuir, 30(19), 5394-5403. doi: 10.1021/la500615k

Guevara, S., Parra, M., Malavé, V., Castillo, L., & Márquez, I. (2018). Efecto de la implementación del método de levantamiento artificial por gas sobre la composición del crudo del campo El Furrial. Revista Tecnológica ESPOL – RTE, 31(1), 1-12.

Guzmán, R., Ancheyta, J., Trejo, F., & Rodríguez, S. (2017). Methods for determining asphaltene stability in crude oils. Fuel, 188, 530-543. doi: 10.1016/j.fuel.2016.10.012

Kraiwattanawong, K., Fogler, H.S., Gharfeh, S.G., Singh, P., Thomason, W.H., & Chavadej, S. (2009). Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels, 23, 1575–1582. doi: 10.1021/ef800706c

Kuang, J., Yarbrougha, J., Enayata, S., Edwarda, N., Wang, J., & Vargas, F.M. (2016). Evaluation of solvents for in-situ asphaltene deposition remediation. Fuel, 241, 1076–1084. doi: 10.1016/j.fuel.2018.12.080

Kuang, J., Melendez-Alvarez, A.A., Yarbrough, J., Garcia-Bermudes, M., Tavakkoli, M., Abdallah, D.S., Punnapala, S., & Vargas, F.M. (2019). Assessment of the performance of asphaltene inhibitors using a multi-section packed bed column. Fuel, 241, 247–254. doi: 10.1016/j.fuel.2018.11.059

Lafont, J.J., Páez, M.S., & Portacio, A.A. (2011). Extracción y Caracterización Fisicoquímica del Aceite de la Semilla (Almendra) del Marañón (Anacardium occidentale L). Información Tecnológica, 22(1), 51-58. doi: 10.4067/S0718-07642011000100007

Li, X., Chia, P., Guoa, X., & Sun, Q. (2019). Effects of asphaltene concentration and asphaltene agglomeration on viscosity. Fuel, 255, 115825-115931. doi: 10.1016/j.fuel.2019.115825

Li, H., Zhang, J., Xu, Q., Hou, C., Sun, Y., Zhuang, Y., & Wu, C. (2020). Influence of asphaltene on wax deposition: Deposition inhibition and sloughing. Fuel, 266, 117047-117055. doi:10.1016/j.fuel.2020.117047

Machałowski, T., Wysokowski, M., Petrenko, L., Fursov, A., Rahimi-Nasrabadi, M., Amro, M.M., Meissner, H., Joseph, Y., Fazilov, B., Ehrlich, H., & Jesionowski, T. (2020). Naturally pre-designed biomaterials: Spider molting cuticle as a functional crude oil sorbent. Journal of Environmental Management, 261, 110218-110230. doi: 10.1016/j.jenvman.2020.110218

Mansoori, G.A. (1997). Modeling of asphaltene and other heavy organic depositions. Journal of Petroleum Science and Engineering, 17, 101-111. doi: 10.1016/s0920-4105(96)00059-9

Marín, T., Marcano, S., & Febres, M. (2016). Evaluación del aceite de Jatropha curcas como aditivo dispersante de asfaltenos en un crudo del campo el Furrial, Venezuela. Ingeniería–Revista Académica de la Facultad de Ingeniería UNAY, 20(2), 98-107.

Marín, T.D. (2019). El aceite de coco (Cocos nucifera) como estabilizante de asfaltenos en un crudo del Estado Monagas, Venezuela: efecto de la temperatura. Ingeniería y Desarrollo, 37(2), 290-305.

Nunes, M., Yuan, L.L., Weingart, D., Alves, V., Nazareth, A.L., Furtado, A.M., & Vasques, E.B.A. (2019). The Use of Cashew Nut Shell Liquid (CNSL) in PP/HIPS Blends: Morphological, Thermal, Mechanical and Rheological Properties. Materials, 12, 1904-1928. doi: 10.3390/ma12121904

Paridar, S., Solaimany, A.R., & Karimi, Y. (2018). Experimental evaluation of asphaltene dispersants performance using dynamic light scattering. Journal of Petroleum Science and Engineering, 163, 570-575. doi: 10.1016/j.petrol.2018.01.013

Pereira, J.C., Delgado-Linares, J., Briones, A., Guevara, M., Scorzza, C., & Salager, J.-L. (2011). The Effect of Solvent Nature and Dispersant Performance on Asphaltene Precipitation from Diluted Solutions of Instable Crude Oil. Petroleum Science and Technology, 29(23), 2432-2440. doi: 10.1080/10916461003735061

Romero, J.F., Feitosa, F.X., Ribeiro, F., & Batista, H. (2018). Paraffin effects on the stability and precipitation of crude oil asphaltenes: Experimental onset determination and phase behavior approach. Fluid Phase Equilibria, 474, 116-125. doi: 10.1016/j.fluid.2018.07.017

Saat, M.A., Chin, L.H., & Wong, C.S. (2020). Treatment of crude oil emulsion using coconut oil and its derivative as green demulsifiers. Recuperado de: https://doi.org/10.1016/j.matpr.2020.01.253

Salehi, B., Gültekin-Özgüven, M., Kırkın, C., Özçelik, B., Bezerra, M.F., Pereira, J.N., Fonseca, C., et al. (2019). Anacardium Plants: Chemical, Nutritional Composition and Biotechnological Applications. Biomolecules, 9(9), 465-499. doi: 10.3390/biom9090465

Sánchez, L., Chávez, J., Ríos, L.A., & Cardona, S.M. (2015). Evaluación de un Antioxidante Natural extraído del Marañón (Anacardium occidentale L.) para mejorar la Estabilidad Oxidativa del Biodiesel de Jatropha. Información Tecnológica, 26(6), 19-30. doi: 10.4067/S0718-07642015000600004

Soltani, B., Reisi, F., & Norouzi, F. (2019). Investigation into mechanisms and kinetics of asphaltene aggregation in toluene/n‑hexane mixtures”, Petroleum Science, 2019. DOI: 10.1007/s12182-019-00383-3

Taiwo, E.A. (2015). Cashew Nut Shell Oil — A Renewable and Reliable Petrochemical Feedstock. In Advances in Petrochemicals. doi: 10.5772/61096

Vargas, F.M., Creek, J.L., & Chapman, W.G. (2010). On the Development of an Asphaltene Deposition Simulator. Energy & Fuels, 24, 2294–2299, 2010. doi: 10.1021/ef900951n

Varjani, S.J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277–286. doi: 10.1016/j.biortech.2016.10.037

Wang, J., & Buckley, J.S. (2003). Asphaltene Stability in Crude Oil and Aromatic SolventssThe Influence of Oil Composition. Energy & Fuels, 17(6), 1445-1451. doi: 10.1021/ef030030y

Zheng, C., Brunner, M., Li, H., Zhang, D., & Atkin, R. (2019). Dissolution and suspension of asphaltenes with ionic liquids. Fuel, 238, 129-138. doi: 10.1016/j.fuel.2018.10.070

Zuo, P., Qu, S., & Shen, W. (2019). Asphaltenes: Separations, structural analysis and applications. Journal of Energy Chemistry, 34, 186–207. doi: 10.1016/j.jechem.2018.10.004

Published

2020-09-11

Issue

Section

Artículos Científicos

How to Cite

Evaluation of Anacardium occidentale oil as an asphaltene flocculation inhibitor. (2020). CIENCIA UNEMI, 13(34), 59-71. https://doi.org/10.29076/issn.2528-7737vol13iss34.2020pp59-71p