Empirical estimation of the probability of lethal events caused by floods in Peru

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol14iss37.2021pp29-38p

Keywords:

Physical and climatic variability, affected dwellings, lethality rate, empirical model

Abstract

The research empirically estimated the probability of lethal events caused by floods based on the affected homes. The empirical estimation used the disaster database of the National Institute of Civil Defense (INDECI) of Peru for the period 2003–2017; A descriptive analysis of the floods was carried out and subsequently a probabilistic curve of lethal events was estimated using a logistic model, relating the logarithm in base 10 of the houses with the probability of finding at least one death. The results show that floods occupy the fifth place in terms of the annual average of deaths and the second place in terms of the number of homes affected, on the other hand, according to the probabilistic curve of lethal events (at least one death) the rate the fatality rate is 27 deaths per 1 000 emergencies and that the affected homes and the number of deaths have a moderate to strong correlation (r2 = 0.669). The model presents an R2 = 0.98 which indicates reliability. It is concluded that the proposed model can be used to probabilistically estimate the risk of lethal events based on the number of houses built.

Downloads

Download data is not yet available.

References

Bischiniotis, K., van den Hurk, B., Zsoter, E., Coughlan de Perez, E., Grillakis, M., & Aerts, J. C. J. H. (2019). Evaluation of a global ensemble flood prediction system in Peru. Hydrological Sciences Journal, 64(10), 1171–1189. https://doi.org/10.1080/02626667.2019.1617868

Boyd, E., Levitan, M., & Van Heerden, I. (2005). Further specification of the dose-response relationship for flood fatality estimation. US-Bangladesh Workshop on Innovation in Windstorm/Storm Surge Mitigation Construction. National Science Foundation and Ministry of Disaster & Relief, Government of Bangladesh. Dhaka, April, 19–21.

Brown, C. A., & Graham, W. J. (1988). Assessing the threat to life from dam failure. Journal of the American Water Resources Association, 24(6), 1303–1309. https://doi.org/10.1111/j.1752-1688.1988.tb03051.x

Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres-CENEPRED. (2014). Manual para la Evaluación de Riesgos Originados por inundaciones fluviales. Recuperado de http://cenepred.gob.pe/web/wp-content/uploads/Guia_Manuales/MANUAL-EVAR.INUNDACIONES.pdf

Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres-CENEPRED. (2015). Manual Para la Evaluación de Riesgos originados por Fenómenos Naturales (2nd ed.). Recuperado de http://www.sigpad.gov.co/sigpad/paginas_detalle.aspx?idp=112

Coates, L. (1999). Flood fatalities in Australia, 1788-1996. Australian Geographer, 30(3), 391–408. https://doi.org/10.1080/00049189993657

DeKay, M. L., & McClelland, G. H. (1993). Predicting Loss of Life in Cases of Dam Failure and Flash Flood. Risk Analysis, 13(2), 193–205. https://doi.org/10.1111/j.1539-6924.1993.tb01069.x

FitzGerald, G., Du, W., Jamal, A., Clark, M., & Hou, X.-Y. (2010). Flood fatalities in contemporary Australia (1997-2008). Emergency Medicine Australasia, 22(2), 180–186. https://doi.org/10.1111/j.1742-6723.2010.01284.x

Instituto Nacional de Defenza Civil-INDECI. (2005). Glosario de téminos del compendio estadístico de prevención y atención de desastres. https://www.indeci.gob.pe/compend_estad/2005/pdfs/doc322_8.pdf

Instituto Nacional de Defenza Civil-INDECI. (2017). Emergencias por desastres para el periodo 2003 - 2017, Perú. Matriz de Base de Datos. https://www.indeci.gob.pe/compend_estad/2018/index.html

Jonkman, S. N. (2005). Global perspectives on loss of human life caused by floods. Natural Hazards, 34(2), 151–175. https://doi.org/10.1007/s11069-004-8891-3

Jonkman, S. N., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2002). Loss of life models for sea and river floods. Flood Defence, 1, 196–206. https://www.researchgate.net/publication/228766594

Ministerio de defensa-MINDEF. (2005). Libro blanco de la defensa nacional. Disponible en: https://www.gob.pe/institucion/mindef/informes-publicaciones/334409-libro-blanco-de-la-defensa-nacional

Ministerio del Ambiente-MINAM. (2016). El Perú y el cambio climatico. Tercera comunicación Nacional del Perú. Características naturales y del territorio. Primera edición, 329 pp. Recuperado de https://www.minam.gob.pe/wp-content/uploads/2016/05/Tercera-Comunicaci%C3%B3n.pdf

Ortega, R. M. M., Pendás, L. C. T., Ortega, M. M., Abreu, A. P., & Cánovas, A. M. (2009). El coeficiente de correlacion de los rangos de spearman caracterizacion. Revista Habanera de Ciencias Medicas, 8(2).

Organización de las Naciones Unidas-ONU. (2020). Cambio climático y medioambiente. Noticia ONU 5 nobiembre 2020. Recuperado de https://news.un.org/es/story/2020/11/1483612

Pulgar, V. (2014). Las ocho regiones naturales del Perú. Terra Brasilis (Nova Série) Revista da Rede Brasileira de História da Geografia e Geografia Histórica. Recuperado de https://journals. openedition.org/terrabrasilis/1027?lang=en

Wallemacq, P. (2018). Pérdidas económicas, pobreza y desastres 1998-2017. Centro de Investigación sobre la Epidemiología de los Desastres (CRED). Recuperado de http://dx.doi.org/10.13140/RG.2.2.35610.08643.

Worldmapper. (2020). Muertes por inundaciones 2001-2017. Recuperado de https://worldmapper.org/maps/flood-deaths-2001to2017/

Zhai, G., Fukuzono, T., & Ikeda, S. (2006). An empirical model of fatalities and injuries due to floods in Japan. Journal of the American Water Resources Association, 42(4), 863–875. https://doi.org/10.1111/j.1752-1688.2006.tb04500.x

Downloads

Published

2021-09-14

Issue

Section

Artículos Científicos

How to Cite

Empirical estimation of the probability of lethal events caused by floods in Peru. (2021). CIENCIA UNEMI, 14(37), 29-38. https://doi.org/10.29076/issn.2528-7737vol14iss37.2021pp29-38p