Microbiological parameters in agricultural substrates produced with different organic waste
DOI:
https://doi.org/10.29076/issn.2528-7737vol19iss50.2026pp132-140pKeywords:
compost, vegetable cultivation, quality indicators, microbiological parametersAbstract
Some of the microbiological parameters suitable for assessing biological activity are basal respiration and microbial biomass, as they respond rapidly to changes in conditions and are important properties used as quality indicators in soils. This study proposes evaluating these two properties in mixtures of organic materials for use as quality indicators in the preparation of agricultural substrates. Mixtures were prepared with six different organic wastes in two proportions, using soil/sawdust and sand/sawdust as bases. Chemical and microbiological parameters were evaluated in each mixture. The pH and conductivity values obtained were used as exclusion criteria, comparing them with those accepted in the literature. A statistical correlation analysis and a principal component analysis were performed, determining that the mixtures with 40% coffee grounds (soil or sand base), 30% paper mill sludge (soil base), 20% lignite, and 5% dolomite (sand base) present adequate conditions for the development of vegetable crops. crops
Downloads
References
Chen, P., Wang, L., Li, W., Zhang, X., Gao, H., Zhou, X., Zhuang, Q., Li, J., Li, X., & Zhang, A. (2024). Micro-biological degradation and transformation of dissolved organic matter following continuous cropping of tobacco. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1319895
Cheng, S., Xue, W., Gong, X., Hu, F., Yang, Y., & Liu, M. (2024). Reconciling plant and microbial ecological strategies to elucidate cover crop effects on soil carbon and nitrogen cycling. Journal of Ecology, 112(12), 2901–2916. https://doi.org/10.1111/1365-2745.14431
Dash, S., & Kujur, M. (2024). Contribution of Organic Carbon, Moisture Content, Microbial Biomass-Carbon, and Basal Soil Respiration Affecting Microbial Population in Chronosequence Manganese Mine Spoil. Nature Environment and Pollution Technology, 23(4), 2315–2323. https://doi.org/10.46488/NEPT.2024.v23i04.035
de Celis, M., de Sosa, L. L., Picca, G., González-Polo, N., Gómez-Ruano, C., Beneduce, L., Zaccone, C., & Panettieri, M. (2024). Alternative organic substrates enhance tomato growth in rooftop farming by promoting specific microbial communities. https://doi.org/10.21203/rs.3.rs-5431099/v1
Fierer, N., Wood, S. A., & Bueno de Mesquita, C. P. (2021). How microbes can, and cannot, be used to assess soil health. Soil Biology and Biochemistry, 153, 108111. https://doi.org/10.1016/j.soilbio.2020.108111
Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Grabowska-Polanowska, B., Kowalczyk, A., & Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research, 225, 105462. https://doi.org/10.1016/j.still.2022.105462
Guerrero-Brotons, M., Perujo, N., Romaní, A. M., & Gómez, R. (2024). Advantages of using a carbon-rich substrate in a constructed wetland for agricultural water treatment: Carbon availability and biota development. Agriculture, Ecosystems & Environment, 360, 108792. https://doi.org/10.1016/j.agee.2023.108792
Guerrero Guerrero, E. M. (2020). Evaluación de sustratos bajo un sistema hidropónico en un cultivo de fresa con variables de calidad. Informador Técnico, 85(1), 52–63. https://doi.org/10.23850/22565035.2922
Kader, S. A., Spalevic, V., & Dudic, B. (2022). Feasibility study for estimating optimal substrate parameters for sustainable green roof in Sri Lanka. Environment, Development and Sustainability, 26(1), 2507–2533. https://doi.org/10.1007/s10668-022-02837-y
Liu, J., Kang, H., Tao, W., Li, H., He, D., Ma, L., Tang, H., Wu, S., Yang, K., & Li, X. (2023). A spatial distribution – Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Science of The Total Environment, 859, 160112. https://doi.org/10.1016/j.scitotenv.2022.160112
Ma, Z., Liang, T., Fu, H., Ma, Q., Chang, D., Zhang, J., Che, Z., Zhou, G., & Cao, W. (2024). Long-term green manuring increases soil carbon sequestration via decreasing qCO2 caused by lower microbial phosphorus limitation in a dry land field. Agriculture, Ecosystems & Environment, 374, 109142. https://doi.org/10.1016/j.agee.2024.109142
Martín-Sanz, J. P., de Santiago-Martín, A., Valverde-Asenjo, I., Quintana-Nieto, J. R., González-Huecas, C., & López-Lafuente, A. L. (2022). Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecological Indicators, 143, 109374. https://doi.org/10.1016/j.ecolind.2022.109374
Mauromicale, G., Monaco, A. Lo, Longo, A. M. G., & Restuccia, A. (2005). Soil solarization, a nonchemical method to control branched broomrape (Orobanche ramosa) and improve the yield of greenhouse tomato. Weed Science, 53(6), 877–883. https://doi.org/10.1614/WS-05-023R1.1
Monsalve Camacho, O. I., Henao Toro, M. C., & Gutiérrez Díaz, J. S. (2021). Caracterización de materiales con uso potencial como sustratos en sistemas de cultivo sin suelo. Ciencia & Tecnología Agropecuaria, 22(1). https://doi.org/10.21930/rcta.vol22_num1_art:1977
Normi, S. S. M., & Baidurah, S. (2024). Transforming Food Waste into Nutrient-Rich Fertilizer: A Sustainable Path Towards Carbon Neutrality and Circular Economy. In Biomass Valorization (pp. 261–292). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8557-5_12
Paolini Gomez, J. E. (2018). Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. REVISTA TERRA LATINOAMERICANA, 36(1), 13. https://doi.org/10.28940/terra.v36i1.257
Pardo-Plaza, Y. J., Paolini Gómez, J. E., & Cantero-Guevara, M. E. (2019). Biomasa microbiana y respiración basal del suelo bajo sistemas agroforestales con cultivos de café. Revista U.D.C.A Actualidad & Divulgación Científica, 22(1). https://doi.org/10.31910/rudca.v22.n1.2019.1144
Ruiz-Dager, M., & Paolini-Gomez, J. E. (2021). Indicadores biológicos de suelos lacustres y aluviales de Venezuela bajo diferentes usos. Parte 1. Actividad microbiana y coeficientes ecofisiológicos. REVISTA TERRA LATINOAMERICANA, 39. https://doi.org/10.28940/terra.v39i0.922
Ruiz-Dager, M., & Paolini, J. (2025). Correlations between enzymatic activities and microbiological parameters in lacustrine and alluvial soils of Venezuela under different land use. STUDIES IN ENVIRONMENTAL AND ANIMAL SCIENCES, 6(2), e17063. https://doi.org/10.54020/seasv6n2-003
Schlüter, S., Roussety, T., Rohe, L., Guliyev, V., Blagodatskaya, E., & Reitz, T. (2022). Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure. SOIL, 8(1), 253–267. https://doi.org/10.5194/soil-8-253-2022
Sharma, S., Lishika, B., Shubham, & Kaushal, S. (2023). Soil Quality Indicators: A Comprehensive Review. International Journal of Plant & Soil Science, 35(22), 315–325. https://doi.org/10.9734/ijpss/2023/v35i224139
Wang, H., Garg, A., Zhang, X., Xiao, Y., & Mei, G. (2020). Utilization of coconut shell residual in green roof: hydraulic and thermal properties of expansive soil amended with biochar and fibre including theoretical model. Acta Geophysica, 68(6), 1803–1819. https://doi.org/10.1007/s11600-020-00492-3
Wilson, G., Johnson, O., & Brown, W. (2024). The Impact of Artificial Intelligence on Digital Marketing Strategies. https://doi.org/10.20944/preprints202408.0276.v1
Xu, Q., Zhang, T., Niu, Y., Mukherjee, S., Abou-Elwafa, S. F., Nguyen, N. S. H., Al Aboud, N. M., Wang, Y., Pu, M., Zhang, Y., Tran, H. T., Almazroui, M., Hooda, P. S., Bolan, N. S., Rinklebe, J., & Shaheen, S. M. (2024). A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. Science of The Total Environment, 942, 173567. https://doi.org/10.1016/j.scitotenv.2024.173567
Yang, Y., Cheng, S., Fang, H., Guo, Y., Li, Y., & Zhou, Y. (2023). Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests. Applied Soil Ecology, 183, 104743. https://doi.org/10.1016/j.apsoil.2022.104743
Zavyalova, N. E., Vasbieva, M. T., & Fomin, D. S. (2020). Microbial Biomass, Respiratory Activity and Nitrogen Fixation in Soddy-Podzolic Soils of the Pre-Urals Area under Various Agricultural Uses. Eurasian Soil Science, 53(3), 383–388. https://doi.org/10.1134/S1064229320030126
Downloads
Published
Issue
Section
License
Copyright (c) 2026 CIENCIA UNEMI

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors can keep the copyright, granting the journal right of first publication. Alternatively, authors can transfer copyright to the journal, which allow authors non-commercial use of the work, including the right to place it in a file open access.














