Data science applied to solid waste management in Los Ríos-Ecuador

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol18iss49.2025pp01-11p

Keywords:

sustainable management, non-hazardous waste, segmentation, data mining, machine learning

Abstract

Solid waste management is a challenge for cities and countries due to urbanization and population growth. This fact creates the need to explore options that facilitate analysis, such as Data Science. Therefore, this study applied techniques like Clustering to analyze the generation and management of non-hazardous solid waste, using the cantons of the Los Ríos province in Ecuador as a case study. Sixteen influential variables were identified through Chi-Square and ANOVA analysis, and Clustering algorithms (K-Means, DBSCAN, and Hierarchical Clustering) were applied to group cantons with similar characteristics. The results show that most cantons do not properly classify waste and dispose of it along with household waste. However, some cantons implement efficient practices such as composting and recycling. Therefore, the implementation of educational programs and specific strategies for each group of cantons is recommended, based on the identified patterns

Downloads

Download data is not yet available.

References

Assef, F., Steiner, M. T., y Lima, E. P. (2022). A review of Clustering techniques for waste management. Heliyon, 8(1). https://doi.org/10.1016/j.heliyon.2022.e08784

Boutsidis, C., Zouzias, A., Mahoney, M. W., y Drineas, P. (2014). Randomized Dimensionality Reduction for k-means Clustering. IEEE Trans. Inf. Theory, 61(2), 1-27. https://doi.org/10.48550/arXiv.1110.2897

Caruso, G., Gattone, S. A., Balzanella, A., y Di Battista, T. (2019). Cluster Analysis: An Application to a Real Mixed-Type Data Set. En C. Flaut, Š. Hošková-Mayerová, y D. Flaut, Models and Theories in Social Systems (pp. 525-533). Springer International Publishing. https://doi.org/10.1007/978-3-030-00084-4_27

Cheng, H., y Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology, 101(11), 3816-3824. https://doi.org/10.1016/j.biortech.2010.01.040

Dunkel, J., Dominguez, D., Borzdynski, Ó. G., y Sánchez, Á. (2022). Solid Waste Analysis Using Open-Access Socio-Economic Data. Sustainability, 14(3), 1233. https://doi.org/10.3390/su14031233

Ferronato, N., y Torretta, V. (2019). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060

Festa, D., Novellino, A., Hussain, E., Bateson, L., Casagli, N., Confuorto, P., . . . Raspini, F. (2023). Unsupervised detection of InSAR time series patterns based on PCA and K-means Clustering. International Journal of Applied Earth Observation and Geoinformation, 118, 103276. https://doi.org/10.1016/j.jag.2023.103276

Gondo, T. (2019). A hierarchical cluster-based segmentation analysis of potential solid waste management health hazards in urban Ethiopia. Jàmbá : Journal of Disaster Risk Studies, 11(2), 716. https://doi.org/10.4102/jamba.v11i2.716

Instituto Nacional de Estadística y Censos. (2024). Censos- Instituto Nacional de Estadística y Censos. Instituto Nacional de Estadística y Censos: https://www.ecuadorencifras.gob.ec/informacion-de-anos-anteriores-hogares/

Instituto Nacional de Estadísticas y Censo. (2022). Boletín Técnico Nacional. Censo Ecuador cuenta conmigo 2022: https://www.censoecuador.gob.ec/public/Boletin_Nacional.htm

Izquierdo-Horna, L., Kahhat, R., y Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809-819. https://doi.org/10.1016/j.spc.2022.08.008

Izquierdo-Horna, L., Zevallos, J., Damazo, M., y Yanayaco, D. (2021). Exploratory Data Analysis of Community Behavior Towards the Generation of Solid Waste Using K-Means and Social Indicators. International Journal of Sustainable Development and Planning, 6(5), 875-881. https://doi.org/10.18280/ijsdp.160508

Kaza, S., Yao, L., Bhada-Tata, P., y Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Group. https://doi.org/https://doi.org/10.1596/978-1-4648-1329-0

Li, J., Guo, S., Ma, R., He, J., Zhang, X., Rui, D., . . . y Guo, H. (2024). Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets. BMC Medical Research Methodology, 24(1), 41. https://doi.org/10.1186/s12874-024-02173-x

Libório, M. P., da Silva Martinuci, O., Machado, A. M., Machado-Coelho, T. M., Laudares, S., y Bernardes, P. (2022). Principal component analysis applied to multidimensional social indicators longitudinal studies: limitations and possibilities. GeoJournal, 87(3), 1453–1468. https://doi.org/10.1007/s10708-020-10322-0

Ministerio del Ambiente. (2019). Dirección Provincial del Ambiente de Los Rios Informe de Rendición de cuenta 2019. https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/04/Los-R%C3%ADos_Fase-2.pdf

Ministerio del Ambiente, Agua y Transición Ecológica. (2020). Ecuador impulsa la gestión adecuada de residuos orgánicos en las ciudades. Ministerio del Ambiente, Agua y Transición Ecológica: https://www.ambiente.gob.ec/ecuador-impulsa-la-gestion-adecuada-de-residuos-organicos-en-las-ciudades/

Organización de las Naciones Unidas. (2018). Cómo la basura afecta al desarrollo de América Latina. Naciones Unidas: https://news.un.org/es/story/2018/10/1443562

Organización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. 11 Ciudades y comunidades sostenibles: https://www.un.org/sustainabledevelopment/es/cities/

Sáez, A., Urdaneta, G., y Joheni, A. (2014). Manejo de residuos sólidos en América Latina y el Caribe. Omnia, 20(3), 121-135. https://www.redalyc.org/articulo.oa?id=73737091009

Singh, J., y Ordoñez, I. (2016). Resource recovery from post-consumer waste: Important lessons for the upcoming circular economy. Journal of Cleaner Production, 134, 342-353. https://doi.org/10.1016/j.jclepro.2015.12.020

Templ, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12), 2729. https://doi.org/10.3390/math11122729

Warintarawej, P., y Nillaor, P. (2023). Implementing data analysis based on the mixed Clustering technique for sustainable participatory waste management in a low-budget area. foresight, 25(1), 108 - 125. https://doi.org/10.1108/FS-09-2021-0179

Watson, K. B. (2014). Categorical Data Analysis. En A. Michalos, Encyclopedia of Quality of Life and Well-Being Research (pp. 601-604). Springer. https://doi.org/10.1007/978-94-007-0753-5_291

Whatley, M. (2022). One-Way ANOVA and the Chi-Square Test of Independence. En M. Whatley, Introduction to Quantitative Analysis for International Educators (pp. 57-74). Springer. https://doi.org/10.1007/978-3-030-93831-4_5

Downloads

Published

2025-09-05

How to Cite

Data science applied to solid waste management in Los Ríos-Ecuador. (2025). CIENCIA UNEMI, 18(49), 01-11. https://doi.org/10.29076/issn.2528-7737vol18iss49.2025pp01-11p