Evolución de componentes de computación cuántica y mediciones cuánticas no destructivas en la informática moderna. //Evolution of quantum computing components and non-destructive quantum measurements in modern computing.
DOI:
https://doi.org/10.29076/issn.2528-7737vol11iss28.2018pp57-69pKeywords:
Computación cuántica, lógica cuántica, qubit, QND, squidAbstract
El presente trabajo, realiza una breve introducción a las medidas QND (Quantum nondemolition measurement) y sus características. Además, se describe teóricamente un qubit acoplado a un oscilador armónico cuántico forzado como ejemplo de una medición QND en un qubit. El formalismo desarrollado para este tipo de sistemas cuánticos acoplados se desenvuelve dentro de la teoría cuántica de la computación. Como parte del estudio de las mediciones QND, se introducen los qubits de flujo que hacen uso de los interferómetros superconductores cuánticos (SQUIDs). El análisis de este esquema informático intenta introducir al lector en los conceptos de computación cuántica como el quibit que es el componente base que permite procesar información de forma cuántica. El objetivo de este trabajo es caracterizar si las medidas elaboradas sobre el qubit acoplado son o no QND. En este sentido, la aplicación del formalismo expuesto permitirá vislumbrar los alcances y limitaciones de los qubits acoplados en el desarrollo y aplicación de los sistemas cuánticos de la computación hasta el día de hoy. Adicionalmente, la aplicación de esta teoría se puede emplear a mediciones QND sobre qubits superconductores articulados a un oscilador armónico cuántico. Todo este proceso es sujeto al análisis y metodología que nos proporciona la historia de la ciencia y la tecnología.
Abstract
The present work makes a brief introduction to QND (Quantum non demolition measurement) measurements and its characteristics. In addition, a qubit coupled to a forced quantum harmonic oscillator which is described theoretically as an example of a QND measurement in a qubit. The formalism developed for this type of coupled quantum systems is developed within the quantum theory of computation. As part of the study of QND measurements, the flow qubits making use of quantum superconducting interferometers (SQUIDs) are introduced. The analysis of this computer schema attempts to introduce the reader to the concepts of quantum computing such as qubit, which is the basic component that allows information to be processed quantumly. The objective of this work is to characterize whether the elaborated measures on the coupled qubit are QND or not. In this sense, the application of the exposed formalism will allow us to glimpse the scope and limitations of coupled qubits in the development and application of quantum computing systems to this day. Additionally, the application of this theory can be applied to QND measurements on superconducting qubits coupled to a quantum harmonic oscillator. All this process is subject to the analysis and methodology provided by the history of science and technology.
Downloads
References
Bachor, H., Levenson, M., & Walls, D. (1988). Quantum nondemolition measurements in an optical-fiber ring resonator. Physical Review A., 38(1), 180-190. doi:10.1103/PhysRevA.38.180
Bahrami, A. (2014). Quantum Nondemolition Measurements. Retrieved from http://www.ifsc.usp.br/~strontium/Teaching/Material2014-1%20SFI5774%20Mecanicaquantica/Seminario%20-%20Abasalt%20-%20Medida%20quantica%20de%20nao-demolicao.pdf
Barenco, A., Bennett, C., & Cleve, R. (1995). Elementary gates for quantum computation. Physical Review A., 52(5), 3457-3467. doi:10.1103/PhysRevA.52.3457
Barreiro, J., Müller, M., & Schindler, P. (2011). An Open-System Quantum Simulator with Trapped Ions. Nature, 486-491. doi:10.1038/543S1a
Bennett , C., & DiVincenzo, D. (2000). Quantum information and computation. 404, 247–255.
Berry, M. V. (1998). Foreword (Introduction to quantum computation). In L. Hoi Kwong , S. Popescu, & T. Spiller, Introduction to quantum computation. United Kingdom: World Scientific Publishing.
Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885-964. doi:10.1103/RevModPhys.80.885
Boissonneault, M., Gambetta, J., & Blais, A. (2009). Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates. Physical Review A., 79(1), 013819. doi:10.1103/PhysRevA.79.013819
Boulant, N., Ithier, G., & Meeson, P. (2007). Quantum nondemolition readout using a Josephson bifurcation amplifier. Physical Review B., 76(1), 014525. doi:10.1103/PhysRevB.76.014525
Braginsky, V., & Khalili, F. (1996). Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys., 68(1), 1-11. doi:10.1103/RevModPhys.68.1
Chirolli, L., & Burkard, G. (2009). Quantum nondemolition measurements of a qubit coupled to a harmonic oscillator. Phys. Rev. B, 80(18), 184509. doi:10.1103/PhysRevB.80.184509
Copeland, J. (2004). The Essential Turing. The ideas that gave birth to the computer age. New York, United States: Oxford.
Devoret, M., & Schoelkopf, R. (2013). Superconducting Circuits for Quantum Information: An Outlook. Science, 339(6124), 1169-1174. doi:DOI: 10.1126/science.1231930
Dotsenko, I., Mirrahimi, M., & Brune, M. (2009). Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states. Physical Review A., 80(1), 013805. doi:10.1103/PhysRevA.80.013805
Fagaly, R. L. (2006). Superconducting quantum interference device instruments and applications. Review of Scientific Instruments, 77(10). doi:https://doi.org/10.1063/1.2354545
Fu-Guo , D., Xi-Han, L., Chun-Yan, L., & Ping , Z. (2005). Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A, 72(4), 044301. doi:10.1103/PhysRevA.72.044301
Grover, L. (1998). Quantum Computers Can Search Rapidly by Using Almost Any Transformation. (A. P. Society, Ed.) Phys. Rev. Lett, 80(19), 4329--4332. doi:10.1103/PhysRevLett.80.4329
Haeffner, H., Becher, C., Riebe, M., & Roos, C. (2013). Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature, 408-411. doi:10.1038/nature01494
Hoddeson, L., & Daitch, V. (2002). True Genius: The Life and Science of John Bardeen, the Only Winner of Two Nobel Prizes in Physics. Washington, DC., United States: Joseph Henry Press.
Hume, D., Rosenband, T., & Wineland, D. (2007). High-Fidelity Adaptive Qubit Detection through Repetitive Quantum Nondemolition Measurements. Phys. Rev. Lett., 99(12), 120502. doi:10.1103/PhysRevLett.99.120502
James, D., Kwiat, P., Munro, W., & White, A. (2005). On the Measurement of Qubits. In M. Hayashi, Asymptotic Theory of Quantum Statistical Inference. Selected papers (pp. 509-538). Tokio: World Scientific.
Jian, L., Silveri, M., & Kumar, K. (2013). Motional averaging in a superconducting qubit. Nature Communications. doi:DOI: 10.1038/ncomms2383
Josephson, B. (1962). Possible new effects in superconductive tunnelling. (Elsevier, Ed.) Physics Letters, 1(7), 251-253. doi:https://doi.org/10.1016/0031-9163(62)91369-0
Katz, N., Ansmann, M., & Radoslaw C., B. (2006). Coherent State Evolution in a Superconducting Qubit from Partial-Collapse Measurement. Science, 312(5779), 1498-1500. doi:10.1126/science.1126475
Kelly, J., Barends, R., & Fowler, A. (2015). State preservation by repetitive error detection in a superconducting quantum circuit. Nature(519), 66-69.
Kok, P., Munro, W., Nemoto, K., & Ralph, T. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(135). doi:10.1103/RevModPhys.79.135
Makhlin, Y., Schön, G., & Shnirman, A. (2001). Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 73(2). doi:10.1103/RevModPhys.73.357
Nielsen , M., & Chuang, I. (2000). Quantum Computation and Quantum Information. Melbourne: Cambridge.
Nielsen, M., & Chuang, I. (2012). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. doi:https://doi.org/10.1017/CBO9780511976667
Preskill, J. (1998). Lecture Notes for Physics 229: Quantum Information and. California Institute of Technology.
Sasura, M., & Buzek, V. (2002). Cold trapped ions as quantum information processors. Journal of Modern Optics , 49(10). doi:https://doi.org/10.1080/09500340110115497
Sicard, A., & Velez, M. (2001). Hipercomputación: la próxima generación de la computación teórica. Revista Universidad EAFIT, 37(143), 47-51.
Solovay, R., & Strassen, V. (1977). A Fast Monte-Carlo Test for Primality. Society for Industrial and Applied Mathematics, 6(1), 84-85. doi:https://doi.org/10.1137/0206006
Steane, A. (1998). Quantum Error Correction. In L. Hoi Kwong, A. Steane, S. Popescu, & T. Spiller, Introduction to quantum computation and information (pp. 184-212). Singapur: World Scientific Publishing.
Trabesinger, A. (2017). Quantum computing: towards reality. Nature, S1. doi:10.1038/543S1a
Turing, A. (1938). On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction. London Mathematical Society (LMS), s2-43(1), 544-546. doi:https://doi.org/10.1112/plms/s2-43.6.544
Turing, A., & Hodges, A. (1985). The enigma of intelligence. New York: HarperCollins Publishers.
Wootters, W. K. (1998). Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett, 80(10), 2245--2248. doi:10.1103/PhysRevLett.80.2245
Zeilinger, A. (1999). Experiment and the Foundations of Quantum Physics. In B. Bederson, More Things in Heaven and Earth. A Celebration of Physics at the Millennium (pp. 482-498). New York: Springer. doi:https://doi.org/10.1007/978-1-4612-1512-7_30
Downloads
Published
Issue
Section
License
Authors can keep the copyright, granting the journal right of first publication. Alternatively, authors can transfer copyright to the journal, which allow authors non-commercial use of the work, including the right to place it in a file open access.