Sequestration of soil organic carbon in grasslands in the province of El Oro, Ecuador

Authors

  • Salomon Barrezueta-Unda Universidad Técnica de Machala http://orcid.org/0000-0003-4147-9284
  • Kelvin Velepucha-Cuenca Universidad Técnica de Machala
  • Mayra Solano Universidad Técnica de Machala
  • Luis Hurtado-Flores Universidad Técnica de Machala

DOI:

https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp14-26p

Keywords:

Brachiaria, soil properties, net production of biomass, colony forming units

Abstract

The soil is the natural resource most vulnerable to climate change, because it represents the largest carbon pool and its productive potential is at risk from the intensification of agricultural and livestock. The capacity to store soil organic carbon (SOC) by grasslands should be studied, as they occupy the largest area on the planet. The objective of this research was to characterize two soils cultivated with pasture of Brachearía sp. (signalgrass) describing some general properties of the soil and the net biomass production (NBP) at root level; in addition, the storage of SOC at different depths in grasslands in the province of El Oro (Ecuador) was analyzed. Plots of 3.0 ha were established in Santa Inés (SI) and Cune (CN), where soil and root biomass samples were taken. The sample depth was 0-0.10 m (C1), 0.10-0.20 m (C2) and 0.20-0.30 m (C3). Differences were shown in soil pH (alkalinity for SI; acidity for CN), and clay percentages (<157.11 g kg-1 in CN). A higher number of colony-forming units was determined in bacteria and NBP in CN, as well as the greater accumulation of SOC (C3=35.01 Mg ha-1; C2=33.44 Mg ha-1), while in SI the higher value was 18.43 Mg ha-1 in C1. In general, the results suggest that an adequate knowledge of geology is needed to better limit the evolution of the stored SOC.

Downloads

Download data is not yet available.

Author Biography

  • Salomon Barrezueta-Unda, Universidad Técnica de Machala

    Ingeniero Agronomo, Master en Gerencia de Empresas Agropecuarias, graduado en la Universidad Técnica de Machala. Candidato a Doctor en Ciencias Agrarias y Forestales por la Universidade da Coruña (España). Profesor de Economia Ambiental, proyectos agropecuarios y entomologia

References

Álvarez-Solís, J., & Azueto-Martínez, M. (2004). Actividad microbiana del suelo bajo diferentes sistemas de producción de maíz en los altos de Chiapas, México. Agrociencia, 38(1), 13–22.

Barré, P., Durand, H., Chenu, C., Meunier, P., Montagne, D., Castel, G., … Cécillon, L. (2017). Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma, 285(January), 50–56. https://doi.org/10.1016/j.geoderma.2016.09.029

Barrezueta-Unda, S., & Paz-González, A. (2017). Estudio comparativo de la estructura elemental de materia orgánica de suelo y mantillo cultivados de cacao en El Oro, Ecuador. Revista Agroecosistemas, 5(1), 2–9.

Bendix, J., Homeier, J., Cueva Ortiz, E., Emck, P., Breckle, S. W., Richter, M., & Beck, E. (2006). Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. International Journal of Biometeorology, 50(6), 370–384. https://doi.org/10.1007/s00484-006-0029-8

Brahma, B., Pathak, K., Lal, R., Kurmi, B., Das, M., Nath, P. C., … Das, A. K. (2018). Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degradation & Development, 29(1), 15–25. https://doi.org/10.1002/ldr.2816

Bravo, C., Ramírez, A., Marín, H., Torres, B., Alemán, R., Torres, R., … Changoluisa, D. (2017). Factores asociados a la fertilidad del suelo en diferentes usos de la tierra de la Región Amazónica Ecuatoriana. Revista Electronica de Veterinaria, 18(11).

Chávez-Velazco, C., & Araya-Vargas, M. (2009). Correlación entre las características del suelo y los nematodos de las raices del banano (Musa AAA) en Ecuador. Agronomia Mesoamericana, 20(2), 361–369.

Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., … Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences, 115(16), 201700298. https://doi.org/10.1073/PNAS.1700298114

Crespo, P., Feyen, J., Buytaert, W., Bücker, A., & Breuer, L. (2011). Identifying controls of the rainfall – runoff response of small catchments in the tropical Andes ( Ecuador ). Journal of Hydrology, 407(1–4), 164–174. https://doi.org/10.1016/j.jhydrol.2011.07.021

Díaz, P., Ruiz, G., Tello, C., & Arévalo, L. (2016). Carbono almacenado en cinco sistemas de uso de tierra , en la región San Martín Perú. Revista Intenacional de Desarrollo Regional Sustentable, 1(2), 57–67.

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Global Change Biology, 17(4), 1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

Eze, S., Palmer, S. M., & Chapman, P. J. (2018). Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. Journal of Environmental Management, 223(October 2017), 74–84. https://doi.org/10.1016/j.jenvman.2018.06.013

Fernández, L., Zalba, P., Gómez, M., & Sagardoy, M. (2005). Bacterias solubilizadoras de fosfato inorgámico aisladas de suelos de la region sojera. Ciencia Del Suelo, 23(1), 31–37. Retrieved from http://www.wuv.de/digital/die_sechs_mythen_des_programmatic_marketings

Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E.-P., … Ozier-Lafontaine, H. (2015). Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for Sustainable Development, 35(2), 607–623. https://doi.org/10.1007/s13593-014-0272-z

Gebeyehu, G., & Soromessa, T. (2018). Status of soil organic carbon and nitrogen stocks in Koga Watershed Area, Northwest Ethiopia. Agriculture & Food Security, 7(1), 1–10. https://doi.org/10.1186/s40066-018-0162-8

Hairiah, K., Dewi, S., Agus, F., Velarde, S., Ekadinata, A., Rahayu, S., & van Noordwijck, M. (2010). Measuring Carbon Stocks Across Land Use System: A Manual. (July), 155.

Han, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023

Hasan, M. M., & Wyseure, G. (2018). Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Science and Engineering, 11(2), 157–166. https://doi.org/10.1016/j.wse.2018.07.002

INEC. (2017). Encuesta de superficie y producción agropecuaria continua. In Instituto Nacional de Estadísticas y Censos. https://doi.org/10.4206/agrosur.1974.v2n2-09

Jiménez, J. J., & Lal, R. (2006). Mechanisms of C Sequestration in Soils of Latin America. Critical Reviews in Plant Sciences, 25(4), 337–365. https://doi.org/10.1080/0735268060094240

Kurz, W., Beukema, S., & Apps, M. (1996). Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Canadian Journal of Forest Resources, Vol. 26, pp. 1973–1979.

Lal, Rattan. (1998). Agronomic impact of soil degration. In R Lal, W. . Blum, C. Valetine, & B. Stewart (Eds.), Methods for Assessment of Soil Degradation. Boca Raton, Florida, EE.UU.: CRC.

Lal, Rattan. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895. https://doi.org/10.3390/su7055875

Lal, Rattan, Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15(030), 79–86. https://doi.org/10.1016/j.cosust.2015.09.002

Lefèvre, C., Rekik, F., Alcantara, V., & Wiese, L. (2017). Soil organic carbon: The hidden potential (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas, Eds.). https://doi.org/10.1038/nrg2350

Lorenz, K., & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 34(2), 443–454. https://doi.org/10.1007/s13593-014-0212-y

Lorenz, K., & Lal, R. (2018). Carbon Sequestration in Agricultural Ecosystems. https://doi.org/10.1007/978-3-319-92318-5

Luna-Romero, A., Ramírez, I., Sánchez, C., Conde, J., Agurto, L., & Villaseñor, D. (2018). Spatio-temporal distribution of precipitation in the Jubones river basin, Ecuador: 1975-2013. Scientia Agropecuaria, 9(1), 63–70. https://doi.org/10.17268/sci.agropecu.2018.01.07

Makeschin, F., Haubrich, M., Abiy, M., Burneo, J., & Klinger, T. (2008). Pasture Management and Natural Soil. In E. Beck (Ed.), Gradients in a Tropical Mountain Ecosystem of Ecuador (pp. 397–408). Berlin: Springer International Piblishing.

Martínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de La Ciencia Del Suelo y Nutrición Vegetal, 8, 68–96. https://doi.org/10.4067/S0718-27912008000100006

Masamichi, T., Hirai, K., Marod, D., Anusontpornperm, S., Limtong, P., Leaungvutivirog, C., & Panuthai, S. (2019). Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand. Forests, 10(106), 1–12. https://doi.org/10.3390/f10020106

McGroddy, M. E., Lerner, A. M., Burbano, D. V., Schneider, L. C., & Rudel, T. K. (2015). Carbon Stocks in Silvopastoral Systems: A Study from Four Communities in Southeastern Ecuador. Biotropica, 47(4), 407–415. https://doi.org/10.1111/btp.12225

Meyer, R. S., Cullen, B. R., Whetton, P. H., Robertson, F. A., & Eckard, R. J. (2018). Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia. Agricultural Systems, 167(August), 34–46. https://doi.org/10.1016/j.agsy.2018.08.010

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

Monroe, P. H. M., Gama-Rodrigues, E. F., Gama-Rodrigues, A. C., & Marques, J. R. B. (2016). Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agriculture, Ecosystems & Environment, 221, 99–108. https://doi.org/10.1016/j.agee.2016.01.022

Monteros Guerrero, A., Sumba Lusero, E., & Salvador Sarauz, S. (2014). Productividad Agrícola En El Ecuador. Quito, Ecuador.

Moreno, J., Sevillano, G., Valverde, O., Loayza, V., Haro, R., & Zambrano, J. (2016). Soil from the Coastal Plane. In J. Espinosa, J. Moreno, & G. Bernal (Eds.), The Soils of Ecuador (pp. 1–195). https://doi.org/10.1007/978-3-319-20541-0

MUNSELL COLOR. (1994). Munsell soil color charts. New Windsor, NY: Kollmorgen Instruments Corporation.

Novara, A., Gristina, L., Kuzyakov, Y., Schillaci, C., Laudicina, V. A., & La Mantia, T. (2013). Turnover and availability of soil organic carbon under different Mediterranean land-uses as estimated by δC natural abundance. European Journal of Soil Science, 64(4), 466–475. https://doi.org/10.1111/ejss.12038

Olsen, S. ., & Sommers, L. . (1982). Phosphorous. In Methods of Soil Analysis (pp. 403–430). Madison: American Society of Agronomy.

Ortíz-Maya, J., Escalante-Espinosa, E., Fócil-Monterrubio, R. L., Ramírez-Saad, H. C., & Díaz Ramírez, I. J. (2017). Dinámica de poblaciones bacterianas y actividad deshidrogenasa durante la biorremediación de suelo recién contaminado e intemperizado con hidrocarburos. Revista Internacional de Contaminacion Ambiental, 33(2), 237–246. https://doi.org/10.20937/RICA.2017.33.02.05

Potthast, K., Hamer, U., & Makeschin, F. (2012). Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry, 111(1–3), 151–167. https://doi.org/10.1007/s10533-011-9626-7

Priess, J. ., de Koning, G. H. ., & Veldkamp, A. (2001). Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador. Agriculture, Ecosystems & Environment, 85(1–3), 269–279. https://doi.org/10.1016/S0167-8809(01)00193-1

Ramachandran-Nair, P. K., Mohan-Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23. https://doi.org/10.1002/jpln.200800030

Rhoades, C. C., Eckert, G. E., & Coleman, D. C. (2000). Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecological Applications, 10(2), 497–505. https://doi.org/10.1890/1051-0761(2000)010[0497:SCDAFA]2.0.CO;2

Ruiz, M., Elizalde, G., & Paolini, J. (2000). Correlaciones entre el carbono orgánico de los microagregados y algunos atributos del suelo en paisaje de sabana. Revista de La Facultad de Agronomia, 26, 125–135.

Ruiz Potma Goncalves, D., Sá, J. C. de M., Mishra, U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 286, 88–97. https://doi.org/10.1016/j.geoderma.2016.10.021

Scott, N. A., Tate, K. R., Ford-robertson, J., Giltrap, D. J., Smith, T., Scott, N. A., … Giltrap, D. J. (1999). Soil carbon storage in plantation forests and pastures: land-use change implications. Tellus, 51, 326–335. https://doi.org/10.3402/tellusb.v51i2.16301

Singh, P., & Benbi, D. K. (2018). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 166(March), 171–180. https://doi.org/10.1016/j.catena.2018.04.006

SPSS, I. (2013). SPSS Statistics for Windows. Retrieved from https://www.ibm.com/us-en/marketplace/spss-predictive-analytics-enterprise

Staller, J. (2001). Reassessing the Development and Chronological Relationships of the Formativeof Coastal Ecuador. Journal of World Prehistory, 15(2), 193–246.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(August), 671–677.

Tischer, A., Potthast, K., & Hamer, U. (2014). Land ‑ use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375–393. https://doi.org/10.1007/s00442-014-2894-x

Tonucci, R. G., Nair, V. D., Ramachandran Nair, P. K., & Garcia, R. (2017). Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian Cerrado. Plant and Soil, 419(1–2), 281–292. https://doi.org/10.1007/s11104-017-3347-1

USDA. (2010). Claves para la Taxonomía de Suelos (Decima). Retrieved from http://www.mdp.edu.ar/agrarias/grado/723_Genesis/archivos/Taxonomia_Suelos_2010.pdf

Vallejo-Quintero, V. (2013). Importance and utility of microbial elements in evaluating soil quality : case studies in silvopastoral systems. Colombia Forestal, 16(1), 83–99.

Villaseñor, D., Chabla, J., & Luna, E. (2015). Caracterización física y clasificación taxonómica de algunos suelos dedicados a la actividad agricola de la provinica del El Oro. Cumbres, 1(2), 28–34.

Walkley, A., & Black, A. (1934). An examination of the determination method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

Weil, R., & Brady, N. (2017). The nature and properties of soil. https://doi.org/http://lccn.loc.gov/2016008568

Zhang, B., Thomas, B. W., Beck, R., Willms, W. D., Zhao, M., & Hao, X. (2018). Slope position regulates response of carbon and nitrogen stocks to cattle grazing on rough fescue grassland. Journal of Soils and Sediments, 18(134). https://doi.org/10.1007/s11368-018-1992-5

Zhou, Z., Wang, C., & Luo, Y. (2018). Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecology and Biogeography, 27(1), 110–124. https://doi.org/10.1111/geb.12663.

Downloads

Published

2020-01-09

Issue

Section

Artículos Científicos

How to Cite

Sequestration of soil organic carbon in grasslands in the province of El Oro, Ecuador. (2020). CIENCIA UNEMI, 13(32), 14-26. https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp14-26p