Mantenimiento óptimo basado en condición para un generador sincrónico utilizando algoritmo predictivo de desgaste de equipos.

Autores/as

  • GEOVANNY JIMENEZ VARGAS voluntaria
  • IVAN DAVID ENDARA VELEZ

DOI:

https://doi.org/10.29076/issn.2528-7737vol15iss40.2022pp26-37p

Palabras clave:

Generador sincrónico, mantenimiento basado en condición, relevancia económica, desgaste de componentes, proceso de actualización, correlación económica

Resumen

En la actualidad, una buena planificación del mantenimiento es de trascendental importancia en los sistemas de generación ya que la detección eficiente y anticipada de fallos que puedan presentase en los mismos terminan convirtiéndose en un verdadero desafío para las empresas generadoras. El presente artículo plantea políticas de mantenimiento optimo utilizando una arquitectura de mantenimiento basado en condición (CBM) para un caso de estudio basado en un generador sincrónico, las cuales son posibles de definir mediante el índice de degradación estimado que presenten los diferentes componentes del generador sincrónico. Los resultados obtenidos demuestran que el modelo propuesto es capaz de proponer una política acertada de mantenimiento optimo relacionando la severidad de daño del componente con el costo promedio de mantenimiento.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

R. Gopinath, C. Santhosh Kumar, K.I. Ramachandran, V. Upendranath, P.V.R. Sai Kiran, Intelligent Fault Diagnosis of Synchronous Generators, Expert Systems with Applications (2015), doi: 10.1016/j.eswa.2015.09.043s

J. A. Andrawus, J. Watson, and M. Kishk, “Wind turbine maintenance optimization: Principles of quantitative maintenance optimization,” Wind Eng., vol. 31, no. 2, pp. 101–110, 2007.

Jabid Quiroga Méndez, Silvia Oviedo Castillo “Implementing condition-based maintenance using modeling and simulation: a case study of a permanent magnet synchronous motor” Ingeniería e Investigación, vol. 31, núm. 2, agosto, 2011, pp. 18-28

François Besnard, and Lina Bertling, “An Approach for Condition-Based Maintenance Optimization Applied to Wind Turbine Blades” IEEE Transactions on Sustainable Energy, VOL. 1, NO. 2, JULY 2010

Jeet Gandhi, R. Gopinath, C. Santhosh Kumar “System Independent Fault Diagnosis for Synchronous Generator” Department of Electronics and Communication Engineering, 2020, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Amrita University, India-641112

Jardine, A. K., Lin, D., & Banjevic, D. “A review on machinery diagnostics and prognostics implementing condition-based maintenance.” Mechanical systems and signal processing, 2016, pp 1483-1510

Feng, Q., Jiang, L., & Coit, D. W. (2016). “Reliability analysis and condition-based maintenance of systems with dependent degrading components based on thermodynamic physics-of-failure”. The International Journal of Advanced Manufacturing Technology, 86, 913–923. https://doi.org/10.1007/ s00170-015-8220-x

Su Chu, Chen Wu, “Optimization of condition-based maintenance for a wind turbine system considering economic dependence among components” Journal of Southeast university (Natural Science Edition), vol 46, No5, 2016, pp 1007-1012

S.J. Bae et al., Reliability Engineering and System Safety, “Condition monitoring of a steam turbine generator using wavelet spectrum-based control chart”, (2017), https://doi.org/10.1016/j.ress.2017.09.025

Wang H Z. “A survey of maintenance policies of deteriorating systems” [J]. European Journal of Open Research, 2002, 139 (3): 4694489. DOI: 10.1016 / s0377-2217 (01) 00197-7.

Van Noortwijk J M. “A survey of the application of gamma prosses in maintenance” Journal. Reliability Engineering and System Safety 2009, 94 (1): 221. DOI: 10.1016 / j. ress. 2007.03.019.

Chiang J H, Yun J. “Optimal maintenance policy for a Markovian system under periodic inspection”, [J]. Reliability Engineering and System Safety, 2001, 71 (2): 165 172. DOI: 10.1016 / s0951-8320 (00) 000093-4.

Tian Z G, Liao H T. “Condition based maintenance optimization for multi-component system using proportional hazards model” [J], 2011, 96 (5): 58159. DOI: 10.1016 / j. ress. 2010.12.023.

Tian Z G, Jin T, Wu B, “Condition based maintenance optimization for wind power generation systems under continuous monitoring” [J] Renewable Energy, 2011, 36 (5): 15021509. DOI: 10.1016 / j. Renene. 2010.10.028.

Guerineau L, Gouno E. “Inference for a failure counting process partially observed”., [J] IEEE Transformatson Reliability, 2014, 64 (1): 19. DOI: 10.1109 / TR.2014.2354171.

SahinI. “A generalization of renewal processes”, [J] Op-ertions Research Letters, 1993, 13 (4): 259 263. DOI: 10.1016 / 0167-6377 (93) 90048-1

Van NoortwijkJM. “Explicit formulas for the variance of discounted life-cycle cost”, Realility Engineering and System Safety, 2003, 80 (2): 18515. DOI: 10.1016 / s0951-8320 (03) 00023-1.

Hornbeek A V, Pintelon L. “A Dynamic predictive maintenance policy por complex multi-component system” [J]. Reliability Engineering and System Safety, 2013, 120 (12): 3950. DOI: 10.1016 / j. ress. 2013.02.029.

Torres Darío, Gallo Andres. “Implementation of a mathematical model for the Trinitaria generation.” [J], IEEE Transformatson Reliability, 2017, 15 (2):22

Descargas

Publicado

2022-09-15

Cómo citar

Mantenimiento óptimo basado en condición para un generador sincrónico utilizando algoritmo predictivo de desgaste de equipos. (2022). CIENCIA UNEMI, 15(40), 26-37. https://doi.org/10.29076/issn.2528-7737vol15iss40.2022pp26-37p