Aislamiento y evaluación de cepas nativas de Trichoderma spp., como promotor de desarrollo radicular

Autores/as

DOI:

https://doi.org/10.29076/issn.2528-7737vol16iss42.2023pp45-54p

Palabras clave:

Bio-estimulantes, Raíces, Amazonía, Estimulación

Resumen

La investigación consistió en aislar, identificar y aplicar diferentes cepas de Trichoderma, multiplicadas por fermentación liquida. Los aislados fueron obtenido de cuatro provincias de la Amazonia Ecuatoriana de tres cultivos. Las cepas de Trichoderma fueron seleccionadas mediante un screenning, el cual consistió en sumergir las semillas de maíz en una solución 1x107 de esporas por tratamiento y se dejó en reposo por una hora. Las inoculaciones se realizaron previo a la siembra cada 15 días, hasta los 60 días. Posteriormente a la primera inoculación de los tratamientos, se evaluó la altura de planta, longitud y diámetro de raíces, como resultado, se determinó que todos los tratamientos que incluían Trichoderma lograron un crecimiento notable en las raíces a diferencia del control. Se concluye que los aislados MSPP-01-03 y MSPP-02-05 actúan como promotores del crecimiento radical de plantas de maíz.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Asuming-Brempong, S. (2013). Phosphate solubilizing microorganisms and their ability to influence the yield of rice. Agricultural Science Research Journal, 3(12), 379-386.

Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. The American phytopathological society. US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman. APS Press. The USA. St. Paul, Minnesota USA. 218p.

Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., & Chen, W. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry, 73, 106-113. https://doi.org/10.1016/j.plaphy.2013.08.011 Abstract

Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote the growth, yield, and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. https://doi.org/10.1002/jsfa.6875

Cumagun, C. J. R. (2014). Advances in the formulation of Trichoderma for biocontrol. Biotechnology and biology of Trichoderma, 527-531. https://doi.org/10.1016/B978-0-444-59576-8.00039-4.

do Amaral, A. C. T., de Holanda Cavalcanti Maciel, M., Machado, A. R., de Oliveira, L. G., Lima, C. S., da Costa, A. F., & de Oliveira, N. T. (2022). Trichoderma as a biological agent of Fusarium oxysporum species complex and Vigna unguiculata growth promoter. European Journal of Plant Pathology, 1-16. https://doi.org/10.1007/s10658-022-02526-6

Dou, K., Gao, J., Zhang, C., Yang, H., Jiang, X., Li, J., Li, Y., Wang, W., Xian, H., & Li, S. (2019). Trichoderma biodiversity in major ecological systems of China. Journal of Microbiology, 57(8), 668-675. https://doi.org/10.1007/s12275-019-8357-7

Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2(2), 149-160. https://doi.org/10.1007/s11557-006-0053-4

Fu, S.-F., Wei, J.-Y., Chen, H.-W., Liu, Y.-Y., Lu, H.-Y., & Chou, J.-Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant signaling & behavior, 10(8), e1048052. https://doi.org/10.1080/15592324.2015.1048052

Gams, W., & Bissett, J. (2002). Morphology and identification of. Trichoderma and Gliocladium, 3-31.

González-Pérez, E., Ortega-Amaro, M. A., Salazar-Badillo, F. B., Bautista, E., Douterlungne, D., & Jiménez-Bremont, J. F. (2018). The Arabidopsis-Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction. Scientific reports, 8(1), 1-14. https://doi.org/10.1038/s41598-018-34500-w

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. Mongolica annual seedlings. Forests, 10(9), 758. https://doi.org/10.3390/f10090758

Harman, G. E. (2006). Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology, 96(2), 190-194. https://doi.org/10.1094/PHYTO-96-0190

Holmes, K. A., Schroers, H.-J., Thomas, S. E., Evans, H. C., & Samuels, G. J. (2004). Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycological Progress, 3(3), 199-210. https://doi.org/10.1007/s11557-006-0090-z

Hoyos-Carvajal, L., Orduz, S., & Bissett, J. (2009). Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological control, 51(3), 409-416. https://doi.org/10.1016/j.biocontrol.2009.07.018

Jaisani, P., & Pandey, R. (2017). Morphological and molecular characterization for identification of isolates of Trichoderma spp. From rhizospheric soils of crops in middle Gujarat. Indian Phytopathology, 70(2), 238-245. https://doi.org/10.24838/ip.2017.v70.i2.71652

Kumar, N. V., Rajam, K. S., & Rani, M. E. (2017). Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove-associated fungi-Trichoderma viride VKF3. International Journal of Current Microbiology and Applied Sciences, 6(11), 2692-2701. https://doi.org/10.20546/ijcmas.2017.611.317

Landero Valenzuela, N., Lara Viveros, F. M., Rodríguez Ortega, A., Pérez Vite, A., & Ortíz Hernández, A. (2019). Trichoderma as a possible mycoparasite of Sporisorium reilianum and its influence on maize yield. Entreciencias: diálogos en la sociedad del conocimiento, 7(20), 13-23. https://doi.org/10.22201/enesl.20078064e.2019.20.67345.

León, J., Brito, O., & Manssu, F. (2018). Evaluacion del control biologico de Spodoptera frugiperda en el cultivo de maız. https://doi.org/10.26910/issn.2528-8083vol3iss11.2018pp18-23p

López, H. A. (2001). Integrated strategies for the control of plant diseases. Revista Facultad Nacional de Agronomía Medellín, 54(1 y 2), 1251-1273.

López-Coria, M., Hernández-Mendoza, J. L., & Sánchez-Nieto, S. (2016). Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Molecular Plant-Microbe Interactions, 29(10), 797-806. https://doi.org/10.1094/MPMI-07-16-0138-R

Martinez-Medina, A., Pozo, M. J., Cammue, B., & Vos, C. M. (2016). Belowground defense strategies in plants: The plant–Trichoderma dialogue. Belowground defence strategies in plants, 301-327. https://doi.org/10.1007/978-3-319-42319-7_13

Nawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological control, 67(2), 149-156. https://doi.org/10.1016/j.biocontrol.2013.07.005

Porras, M., Barrau, C., & Romero, F. (2007). Effects of soil solarization and Trichoderma on strawberry production. Crop Protection, 26(5), 782-787. https://doi.org/10.1016/j.cropro.2006.07.005

Poveda, J. (2020). Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy, 10(1), 118. https://doi.org/10.3390/agronomy10010118

Rebolledo-Prudencio, O. G., Dautt-Castro, M., Estrada-Rivera, M., del Carmen González-López, M., Jijón-Moreno, S., & Casas-Flores, S. (2020). Trichoderma in the rhizosphere: An approach toward a long and successful symbiosis with plants. New and Future Developments in Microbial Biotechnology and Bioengineering, 3-38. https://doi.org/10.1016/B978-0-12-819453-9.00001-5

Rifai, M. A. (1969). A revision of the genus Trichoderma. Mycological papers, 116, 1-56.

Said, S. D. (2007). Spore production of biocontrol agent Trichoderma harzianum: Effect of C/N ratio and glucose concentration. Jurnal Rekayasa Kimia & Lingkungan, 6(1), 35-40.

Samuels, G. J. (1996). Trichoderma: A review of biology and systematics of the genus. Mycological Research, 100(8), 923-935. https://doi.org/10.1016/S0953-7562(96)80043-8

Samuels, G. J., & Hebbar, P. K. (2015). Trichoderma: Identification and agricultural applications. APS Press.

Silva, V. N. da, Guzzo, S. D., Lucon, C. M. M., & Harakava, R. (2011). Promoção de crescimento e indução de resistência à antracnose por Trichoderma spp. Em pepineiro. Pesquisa Agropecuária Brasileira, 46, 1609-1618. https://doi.org/10.1590/S0100-204X2011001200005

Souza, R. de, Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology, 38, 401-419. https://doi.org/10.1590/S1415-475738420150053

Taylor, J. T., Harting, R., Shalaby, S., Kenerley, C. M., Braus, G. H., & Horwitz, B. A. (2022). Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi, 8(4), 372. https://doi.org/10.3390/jof8040372

Vargas, W. A., Crutcher, F. K., & Kenerley, C. M. (2011). Functional characterization of a plant‐like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytologist, 189(3), 777-789. https://doi.org/10.1111/j.1469-8137.2010.03517.x

Velazquez, E. B. (2019). Biodiversity in Ecuador. http://190.57.147.202:90/xmlui/bitstream/handle/123456789/303/La%20Biodiversidad.pdf?sequence=1&isAllowed=y

Vergara, J. A., García, A., Vera, E., & Pazmiño, D. (2020). Morphophysiological responses of the root of rice (Oryza sativa L.) variety SFL 11 in the nursery phase to the application of native strain of Trichoderma sp. And bovine vermicompost leachate La Técnica, 23, 13-24. http://dx.doi.org/10.33936/la_tecnica.v0i23.2082

Weindling, R. (1932). Trichoderma lignorum is a parasite of other soil fungi. Phytopathology, 22(8), 837-845.

Zhou, C., Guo, R., Ji, S., Fan, H., Wang, J., Wang, Y., & Liu, Z. (2020). Isolation of Trichoderma from forestry model base and the antifungal properties of isolate TpsT17 toward Fusarium oxysporum. Microbiological Research, 231, 126371. https://doi.org/10.1016/j.micres.2019.126371.

Descargas

Publicado

2023-05-27

Cómo citar

Aislamiento y evaluación de cepas nativas de Trichoderma spp., como promotor de desarrollo radicular. (2023). CIENCIA UNEMI, 16(42), 45-54. https://doi.org/10.29076/issn.2528-7737vol16iss42.2023pp45-54p