Ciclo de vida del cacao con economía circular en la Amazonía ecuatoriana
DOI:
https://doi.org/10.29076/issn.2528-7737vol18iss48.2025pp39-49pPalavras-chave:
Cultivo tropical, gestión de residuos, Producción agrícola, evalorización de subproductos, sostenibilidad ambientalResumo
El cacao es uno de los cultivos más importantes en Ecuador, especialmente en la Amazonía, sin embargo, su producción genera diversos impactos ambientales y sociales, principalmente relacionados con la gestión inadecuada de residuos. Este estudio analizó el impacto ambiental de las plantaciones de cacao mediante una evaluación del ciclo de vida (ACV) con un enfoque en la economía circular, tomando como caso de estudio el cantón Loreto, provincia de Orellana. El análisis se realizó utilizando la herramienta GaBi, aplicando el método TRACI 2.1 para identificar los principales impactos ambientales desde el transporte de plantas hasta la venta del producto final. Los resultados revelaron que las emisiones de CO₂ (228 kg), SO₂ (0.00462 kg) y N (0.00128 kg) están principalmente asociadas al uso de diesel en el transporte. Se identificaron impactos significativos sobre el agua, el aire y el suelo durante las etapas de riego, abono y fertilización, así como pérdida de biodiversidad causada por el uso intensivo de insumos químicos. En conclusión, la revalorización de subproductos del cacao bajo un enfoque de economía circular, junto con la implementación de estrategias sostenibles en la gestión de insumos, puede mitigar los impactos negativos y promover una producción más sostenible.
Downloads
Referências
Alcívar-Córdova, K. S.; Quezada-Campoverde, J. M.; Barrezueta-Unda, S., Garzón-Montealegre, V. J.; Carvaja-Romero, H. (2021). Análisis económico de la exportación del cacao en el Ecuador durante el periodo 2014 – 2019. Polo del Conocimiento, 6 (3), 2430-2444. https://polodelconocimiento.com/ojs/index.php/es/article/view/2522
Buor, J. K. (2022). Understanding the socio-economic and environmental impacts of Ghana’s change in economic status on the upstream cocoa supply chain. Management of Environmental Quality, 33 (6), 1379-1403. https://doi.org/10.1108/MEQ-11-2021-0261
Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-González, J.; Gallar, D. (2022). Assessment of the environmental impact and economic performance of cacao agroforestry systems in the Ecuadorian Amazon region: An LCA approach. Science of the Total Environment, 849, 157795. https://doi.org/10.1016/j.scitotenv.2022.157795
Coltro, L.; Tavares, M.; Sturaro, K. B. F. S. (2024). Life cycle assessment of conventional and organic Arabica coffees: From farm to pack. The International Journal of Life Cycle Assessment, 29 (9), 1672-1687. https://doi.org/10.1007/s11367-024-02317-7
di Filippo, R.; Bursi, O. S.; di Maggio, R. (2022). Global warming and ozone depletion potentials caused by emissions from HFC and CFC banks due to structural damage. Energy and Buildings, 273, 112385. https://doi.org/10.1016/j.enbuild.2022.112385
Guddaraddi, A.; Singh, A.; Amrutha G.; Saikanth.; D. R. K.; Kurmi, R.; Singh, G.; Chowdhury, M.; Singh, B.V. (2023). Sustainable Biofuel Production from Agricultural Residues an Eco-Friendly Approach: A Review. International Journal of Environment and Climate Change, 13 (10), 2905-2914. https://journalijecc.com/index.php/IJECC/article/view/2956
Hassan, M. N. A.; Jaramillo, P.; Griffin, W. M. (2011). Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector’s energy security. Energy Policy. 39 (5), 2615-2625. https://doi.org/10.1016/j.enpol.2011.02.030
Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P. K.; Kumar, R.; Kumar, P.; Shubham, S.; Sharma, P.; Vara, P. V. (2021). Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability, 13 (17), 9963. https://doi.org/10.3390/su13179963
Lourenço, K. S.; Barthel, M.; Velthof, G.; Westerik, D.; Rahn, E.; Pulleman, M.; Six, J.; Giller, K.E. (2024). Ground Zero? Let’s get real on regeneration! Report: Assessing greenhouse gas emissions from post-harvest residue management in coffee and cocoa production systems. 44 p. https://hdl.handle.net/10568/148913
Maney, C.; Sassen, M.; Hill, S. L. L. (2022). Modelling biodiversity responses to land use in areas of cocoa cultivation. Agricultural, Ecosystem and Environment, 324, 107712. https://doi.org/10.1016/j.agee.2021.107712
Munasinghe, M.; Jayasinghe, P.; Deraniyagala, Y.; Matlaba, V. J.; Santos, J. F.; Maneschy, M. C.; Mota, J. A. (2019). Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability. Sustainable Production and Consumption, 17, 161-175. https://doi.org/10.1016/j.spc.2018.10.001
Oginah, S. A.; Posthuma, L.; Maltby, L.; Hauschild, M.; Fantke, P. (2023). Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment. Environment International, 171, 107705. https://doi.org/10.1016/j.envint.2022.107705
Ortiz-Rodríguez, O. O.; Villamizar-Gallardo, R.A.; Naranjo-Merino, C.A.; García-Caceres, R.G.; Castañeda-galvís, M. T. (2016). Carbon footprint of the colombian cocoa production. Engenharia Agrícola, 36, 260-270. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
Pelletier, N.; Arsenault, N.; Tyedmers, P. (2008). Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production. Environmental Management, 42 (6), 989-1001. https://link.springer.com/article/10.1007/s00267-008-9155-x
Pérez-Neira, D.; Copena, D.; Armengot, L.; Simón, X. (2020). Transportation can cancel out the ecological advantages of producing organic cacao: The carbon footprint of the globalized agrifood system of ecuadorian chocolate. Journal of Environmental Management, 276, 111306. https://doi.org/10.1016/j.jenvman.2020.111306
Posthuma, L.; van Gils, J.; Zijp, M. C.; van de Meent, D.; de Zwart, D. (2019). Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environmental Toxicology & Chemistry, 38 (4), 905-917. https://doi.org/10.1002/etc.4373
Rahmah, D. M.; Januardi, P.; Mardawati, E.; Kastaman, R.; Kurniawan, K. I. A.; Sofyana, N. T.; Noguchi, R. (2024). Integrating life cycle assessment and multi criteria decision making analysis towards sustainable cocoa production system in Indonesia: An environmental, economic, and social impact perspective. Heliyon, 10 (19). https://doi.org/10.1016/j.heliyon.2024.e38630
Rebolledo-Leiva, R.; Almeida-García, F.; Pereira-Lorenzo, S.; Ruíz-Nogueira, B.; Moreira, M. T.; González-García, S. (2022). Introducing lupin in autochthonous wheat rotation systems in Galicia (NW Spain): An environmental and economic assessment. Science of Total Environment, 838, 156016. https://doi.org/10.1016/j.scitotenv.2022.156016
Ronie, M. E.; Abdul Aziz, A. H.; Kobun, R.; Pindi, W.; Roslan, J.; Putra, N. R.; Mamat, H. (2024). Unveiling the potential applications of plant by-products in food – A review. Waste Management Bulletin, 2 (3), 183-203. https://doi.org/10.1016/j.wmb.2024.07.008
Saavedra, J. F.; Vargas, O.R. (2000). Estimación del impacto ambiental del cultivo de caña de azúcar utilizando la metodología del análisis del ciclo de vida (acv). Revista de Ingeniería, 12, 61-67. https://doi.org/10.16924/revinge.12.11
Salazar-Camacho, N. A.; Delgadillo-Mirquez, L.; Sanchez-Echeverri, L. A.; Tovar-Perilla, N. J. (2024). Evaluating Sustainable Alternatives for Cocoa Waste Utilization Using the Analytic Hierarchy Process. Sustainability, 16 (17), 7817. https://doi.org/10.3390/su16177817
Silva-Parra, A.; Trujillo-González, J. M.; Brevik, E. C. (2021). Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis. Green House Gases Science & Technology, 11 (3), 554-572. https://doi.org/10.1002/ghg.2066
Toplicean, I.-M.; Datcu, A.-D. (2024). An Overview on Bioeconomy in Agricultural Sector, Biomass Production, Recycling Methods, and Circular Economy Considerations. Agriculture, 14 (7), 1143. https://doi.org/10.3390/agriculture14071143
Viteri, O.; Ramos-Martín, J.; Lomas, P. L. (2018). Livelihood sustainability assessment of coffee and cocoa producers in the Amazon region of Ecuador using household types. Journal of Rural Studies, 62 1-9. https://doi.org/10.1016/j.jrurstud.2018.06.004
Vouitsis, I.; Portugal, J.; Kontses, A.; Karlsson, H. L.; Faria, M.; Elihn, K.; Juárez-Facio, A.T.; Amato, F.; Piña, B.; Samaras, Z. (2023). Transport-related airborne nanoparticles: Sources, different aerosol modes, and their toxicity. Atmospheric Environment, 301, 119698. https://doi.org/10.1016/j.atmosenv.2023.119698
Wani, N. A.; Mishra, U. (2022). An integrated circular economic model with controllable carbon emission and deterioration from an apple orchard. Journal of Cleaner Production, 374, 133962. https://doi.org/10.1016/j.jclepro.2022.133962
Wyer, K. E.; Kelleghan, D. B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T. P. (2022). Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. Journal of Environmental Management, 323,116285. https://doi.org/10.1016/j.jenvman.2022.116285
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 CIENCIA UNEMI

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los autores pueden mantener el copyright, concediendo a la revista el derecho de primera publicación. Alternativamente, los autores pueden transferir el copyright a la revista, la cual permitirá a los autores el uso no-comercial del trabajo, incluyendo el derecho a colocarlo en un archivo de acceso libre.