Obtención de un extracto con capacidad antioxidante obtenido a partir de residuos de las hojas del maíz (Zea mays)

Autores

DOI:

https://doi.org/10.29076/issn.2602-8360vol9iss17.2025pp213-218p

Palavras-chave:

capacidad antioxidante, extractos vegetales, FTIR, maíz

Resumo

El maíz (Zea mays) es un cultivo de gran importancia para la alimentación en Ecuador, su cultivo genera altos volúmenes de residuos que, debido a un mal manejo, podrían contaminar el medio ambiente. Las hojas del maíz, ricas en biomoléculas como clorofila y flavonoides, tienen potencial para aplicaciones industriales en alimentos y cosméticos. Esta investigación se enfoca en obtener un extracto vegetal a partir de las hojas del maíz generadas de la cosecha y evaluar su capacidad antioxidante. Se obtuvieron dos extractos utilizando como disolventes etanol al 96% y una mezcla acetona-etanol en proporción 3:1. Mediante espectroscopia infrarroja por transformada de Fourier (FTIR) indicó la presencia de compuestos hidroxilados en ambos extractos, donde el extracto obtenido a través de la mezcla acetona-etanol presentó mayor intensidad en los picos. Se evaluó la técnica del 2,2-Difenil-1-Picrilhidrazilo (DPPH) para comprobar la capacidad antioxidante de los extractos, obteniendo una concentración equivalente de Trolox de 107.15 y 104.39 µmol/g respectivamente.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Akhayere E, Kavaz D. Synthesis of silica nanoparticles from agricultural waste. Agri-Waste and Microbes for Production of Sustainable Nanomaterials. 2021;121–38.

Albán Recibido G, Caviedes M. Producción de semilla de maíz en el Ecuador: retos y oportunidades. ACI Avances en Ciencias e Ingenierías. 2019;11(1):116–23.

Instituto Nacional de Estadística y Censos. Encuesta de Superficie y Producción Agropecuaria Continua. 2024. Available from: https://app.pow-erbi.com/view?r=eyJrIjoiZTEyY2NiZDItYjIzYi00ZGQ1LTlkNGEtNDE1OG-ViM2Q1N2VlIiwidCI6ImYxNThhMmU4LWNhZWMtNDQwNi1iMGFiLWY1ZTI1OW-JkYTExMiJ9&pageName=ReportSection

Martillo J, Lesme R, Oliva L. Estimación del potencial energético de la tusa en la provincia de Los Ríos y Guayas, Ecuador. Centro Azúcar. 2020;47:11-21

Carvajal E, Guamn-Burneo C, Portero P, Salas E, Tufio C, Bastidas B. Aprovechamiento de resi-duos orgánicos en distintos cultivos de ecuador. AXIOMA. 2017;(16):84–95

Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO. Environmentally Friendly Meth-ods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. The Scientific World Journal. 2020;2020(1):6792069

Pareek S, Sagar NA, Sharma S, Kumar V, Agarwal T, González-Aguilar GA, et al. Chlorophylls: Chemistry and Biological Functions. Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition. 2017;1:269–84

Gutteridge JMC, Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem Biophys Res Commun. 2010;393(4):561–4.

Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Bi-ochimica et Biophysica Acta (BBA) - Bioenergetics. 1989;975(3):384–94

de la Paz N, Fernández M, López O, Garcia C, Nogueira A, Torres L, et al. Spray drying of chitosan acid salts: Process development, scaling up and physicochemical material characterization. Mar Drugs. 2021;19(6).

Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204–9.

Cao Z, Wang Z, Shang Z, Zhao J. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS One. 2017;12(2):e0172359.

Okur İ, Baltacıoğlu C, Ağçam E, Baltacıoğlu H, Alpas H. Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC. Waste Biomass Valorization. 2019;10(12):3545–55

Patle TK, Shrivas K, Kurrey R, Upadhyay S, Jangde R, Chauhan R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spec-troscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242:118717.

Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany. 2019;120:261–7.

Chang H, Kao MJ, Chen CH, Chen CH, Cho KC, Lai XR. Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells. International Journal of Photoenergy. 2013;2013.

Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Encyclopedia of Analytical Chemistry [Internet]. R.A. Meyers and M.L. McKelvy; 2006. https://doi.org/10.1002/9780470027318.a5606

Pharmawati M, Wrasiati LP. Phytochemical Screening and FTIR Spectroscopy on Crude Extract from Enhalus acoroides Leaves. Malaysian Journal of Analytical Sciences. 2020;24:70–7.

Patle TK, Shrivas K, Kurrey R, Upadhyay S, Jangde R, Chauhan R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242:118717

Wintola OA, Afolayan AJ. Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacogn Mag. 2011;7(28):325.

Ramírez-Esparza U, Agustín-Chávez MC, Ochoa-Reyes E, Alvarado-González SM, López-Mar-tínez LX, Ascacio-Valdés JA, et al. Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants. 2024;13(9):1142

Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports. 2020 10:1 2020;10(1):1–9.

Abirami S, Priyalakshmi M, Soundariya A, Samrot A V, Saigeetha S, Emilin RR, et al. Antimi-crobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea mays L.) silk. Current Research in Green and Sustainable Chemistry. 2021;4:100089.

Ching-Yun Hsu, Pi-Yu Chao, Shene-Pin Hu, Chi-Ming Yang. The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins. Food Nutr Sci. 2013;4.

Publicado

2026-01-05

Como Citar

Puruncajas Paucar, Ángel S. ., Fernández Rivero, D., & López Hernández, O. D. . (2026). Obtención de un extracto con capacidad antioxidante obtenido a partir de residuos de las hojas del maíz (Zea mays). FACSALUD-UNEMI, 9(17), 213-218. https://doi.org/10.29076/issn.2602-8360vol9iss17.2025pp213-218p