Evaluación de extractos de desechos de toronja (Citrus paradisi) como sustancia bioactiva para formulación de un desinfectante para alimentos frescos

Palabras clave: Toronja, Citrus paradisi, antimicrobiana

Resumen

La búsqueda de antimicrobianos naturales que puedan ser utilizados como productos de desinfección de frutas y vegetales frescos es una necesidad de los consumidores y la industria de alimentos mínimamente procesados. En Ecuador, se utilizan productos con esta finalidad cuyas materias primas son importadas, por tal motivo se planteó evaluar una sustancia bioactiva a partir de los desechos de la producción nacional de toronja. Las semillas, el albedo (mesocarpio) y la cáscara (exocarpio) se sometieron a procesos de extracción por Soxhlet, utilizando etanol como disolvente. Para cada extracto se evaluó su  actividad antimicrobiana por el método de difusión de Kirby-Bauer modificado (pozos) frente a diferentes patógenos: Pseudomona aeruginosa, Staphylococcus aureus, Escherichia coli y Rhizopus stoleiner. Los extractos de albedo y cáscara presentaron actividad antibacteriana frente a E. coli y S. aureus, mientras que el extracto de semillas no mostró sensibilidad frente a ninguno de los microorganismos, a la concentración ensayada. A partir de estos resultados se prepararon diferentes mezclas de los extractos bioactivos manteniendo la actividad antibacteriana y logrando actividad antifúngica frente a R. stoleiner. Este último resultado fue superior al obtenido para la evaluación de un producto comercial con principio activo de semillas de toronja.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aadil, R.M., Xin-An, Z., Zhong, H. & Da-Wen, S. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, Volume 141, Issue 3, Pages 3201-3206. https://doi.org/10.1016/j.foodchem.2013.06.008.

Badawy, M. E. I., & Abdelgaleil, S. A. M. (2014). Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Industrial Crops and Products, 52, 776-782. https://doi.org/10.1016/j.indcrop.2013.12.003

Caccioni, D. R. L., Guizzardi, M., Biondi, D. M., Agatino Renda, & Ruberto, G. (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology, 43(1), 73-79

Costa, M.G., Fonteles, T.V., De Jesus, A., Almeida, F., De Miranda M., Fernandes F. & Rodrigues, S. (2013). Food Bioprocess Technol 6: 997. https://doi.org/10.1007/s11947-011-0746-9

Cristóbal-Luna, J. M., Álvarez-González, I., Madrigal-Bujaidar, E., & Chamorro-Cevallos, G. (2018). Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food and Chemical Toxicology, 112, 224-234. https://doi.org/10.1016/j.fct.2017.12.038

Cushnie T.P. & Lamb J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents. Volume 26, Issue 5, Pages 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.

Duccio, R.L., Guizzardi, M., Biondi, D., Renda, A. & Ruberto, G. (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology Volume 43, Issues 1–2, Pages 73-79. https://doi.org/10.1016/S0168-1605(98)00099-3

Flamini, G., & Cioni, P. L. (2010). Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chemistry, 120(4), 984-992. https://doi.org/10.1016/j.foodchem.2009.11.037

Galanakis, C.M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, Volume 26, Issue 2, Pages 68-87. https://doi.org/10.1016/j.tifs.2012.03.003.

Ganzera, M., Aberham, A., & Stuppner, H. (2006). Development and Validation of an HPLC / UV / MS Method for Simultaneous Determination of 18 Preservatives in Grapefruit Seed Extract. Journal of Agricultural and Food Chemistry, 54, 3768–3772

Garcia-Castello, E.M., Rodriguez-Lopez, A.D., Mayor, L., Ballesteros, R., Conidi, C. & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT - Food Science and Technology, Volume 64, Issue 2, Pages 1114-1122. https://doi.org/10.1016/j.lwt.2015.07.024.

Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289-299. https://doi.org/10.1016/j.foodchem.2019.05.136

Karaman E., Yılmaz E., & Tuncel N. B., (2017). Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioactive Carbohydrates and Dietary Fibre, 11, 9-17, https://doi.org/10.1016/j.bcdf.2017.06.001.

Kuete, V., Ngameni, B., Simo, C.C.F., Tankeu, R.K., Ngadjui, B.T., Meyer, J.J.M., Lall, N. & Kuiate, J.R. (2006). Actividad antimicrobiana de los extractos crudos y compuestos de Ficus chlamydocarpa y Ficus cordata (Moraceae) J Ethnopharmacol; 120 17–24. http://dx.doi.org/10.1016 / j.jep.2008.07.026

Kumar, K., Narayani, M., Subanthini, A. & Jayakumar M. (2011). Antimicrobial Activity and Phytochemical Analysis of Citrus Fruit Peels -Utilization of Fruit Waste. International Journal of Engineering Science and Technology. 3. 5414-5421

Londoño-Londoño, J., Rodrigues, V., Lara, O., Gil, A., Crecsynski, T., Arango, G., Ramirez, J.R. (2010). Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry, Volume 119, Issue 1, Pages 81-87. https://doi.org/10.1016/j.foodchem.2009.05.075.

Ng, T. B., El-Din Ahmed Bekhit, A., Fang, E. F., Li, X., Lu, Q., Guo, H., & Wong, J. H. (2015). Grapefruit (Citrus paradisii) oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 463–470). https://doi.org/10.1016/B978-0-12-416641-7.00052-3

Ochoa-Velasco, C. E., Salcedo-Pedraza, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. A. (2018). Use of microbial models to evaluate the effect of UV-C light and trans-cinnamaldehyde on the native microbial load of grapefruit (Citrus × paradisi) juice. International Journal of Food Microbiology, 282, 35-41. https://doi.org/10.1016/j.ijfoodmicro.2018.05.023

Okunowo, W., Oyedeji, O., Afolabi, L. and Matanmi, E. (2013). Essential Oil of Grape Fruit (Citrus paradisi) Peels and Its Antimicrobial Activities. American Journal of Plant Sciences, Vol. 4 No. 7B, pp. 1-9. doi: 10.4236/ajps.2013.47A2001.

Ortuño, A., Báidez, A., Gómez, P., Arcas, M.C., Porras, I., García-Lidón, A. & Del Río, J.A. (2006). Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chemistry, Volume 98, Issue 2, Pages 351-358. https://doi.org/10.1016/j.foodchem.2005.06.017.

Rawson, A., Tiwari, B.K., Patras, A., Brunton, N., Brennan, C., Cullen, P.J. & O'Donnell C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, Volume 44, Issue 5, Pages 1168-1173. https://doi.org/10.1016/j.foodres.2010.07.005

Ren, J.-N., Tai, Y.-N., Dong, M., Shao, J.-H., Yang, S.-Z., Pan, S.-Y., & Fan, G. (2015). Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry, 185, 25-32. https://doi.org/10.1016/j.foodchem.2015.03.142

Roller, S. y Seedhar, P. (2002) El carvacrol y el ácido cinámico inhiben el crecimiento microbiano en melones y kiwis recién cortados a 4 ° C y 8 ° C. Cartas en Microbiología Aplicada, 35, 390-394. http://dx.doi.org/10.1046/j.1472-765X.2002.01209.x

Sawamura, M. (2005). Volatile constituents of Redblush grape fruit (Citrus paradise) and pummelo (Citrus grandis) peel essential oil from Kenya. Journal of Agricultural and Food Chemistry, 25(53), 9790–9794.

Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 34, 29-46. https://doi.org/10.1016/j.nut.2016.09.006

Toribio, M.S., Oriani D.S. y Skliar M.I. (2004). “Actividad antimicrobiana de Centaurea calcitrapa”. Ars Pharmaceutica, 45(4): 335-341.

United States Department of Agriculture (2016). National agricultural statistics service. Recuperado de:http://www.usda.gov/ and http://www.nass.usda.gov/

Wang, L. F., & Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT - Food Science and Technology, 74, 338–345. https://doi.org/10.1016/j.lwt.2016.07.066

Wei-Lun, H., Hyuk, J. & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, Volume 25, Issue 1, Pages 71-83, https://doi.org/10.1016/j.jfda.2016.11.008.

Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Management, 80, 252-273. https://doi.org/10.1016/j.wasman.2018.09.024

Publicado
2020-09-11
Cómo citar
Bello-Alarcón, A., Monsalve-Paredes, M., & Carrillo-Tomalá, C. (2020). Evaluación de extractos de desechos de toronja (Citrus paradisi) como sustancia bioactiva para formulación de un desinfectante para alimentos frescos. CIENCIA UNEMI, 13(34), 28-33. Recuperado a partir de http://ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/992
Sección
Artículos Científicos