Rice powder waste enzymatic hydrolysis for production of second generation ethanol

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp41-50p

Keywords:

Reducing Sugars, Bioconversion, Cellulases, Gas Chromatography, Saccharomyces cerevisiae, Ethanol

Abstract

The objective of the present investigation was to hydrolyze the rice powder to reducing sugars and, through alcoholic fermentation, obtain bioethanol. Nine solutions of ground rice powder (8%, 13% and 18%) and purified water were prepared and inoculated with conidia of Trichoderma spp in concentrations (0.2 g / L, 0.4 g / L and 0.6 g). / L), which were incubated at 30 ° C for 144 hours. Using the DNA method (3, 5 di nitrosalisilic acid), the reducing sugars were quantified: treatment A: 4.32 ± 0.08%, B: 5.27 ± 0.07%, C: 5.10 ± 0, 01%, D: 5.53 ± 0.12%, E: 8.24 ± 0.06%, F: 6.37 ± 0.07%, G: 5.13 ± 0.02%, H: 7, 19 ± 0.26%, I: 9.69 ± 0.18% and ethanol by gas chromatography. The treatment with the highest percentage of bioconversion was treatment I (18% and 0.6 g / L inoculum), where the glucose concentration was 9.88%, and the ethanol yield was 5 ° GL. In conclusion it is possible to hydrolyze the total carbohydrates present in the rice powder bz reducing sugars and the subsequent alcoholic fermentation.

Downloads

Download data is not yet available.

References

Bonilla, H. R., Armijos, H. A., & Calderón, B. L. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química, 10(1), 79-82.

Chakraborty, S., Chowdhury, S., & Das Saha, P. (2011). Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533-1541. https://doi.org/10.1016/j.carbpol.2011.06.058

Cunha, J. T., Aguiar, T. Q., Romaní, A., Oliveira, C., & Domingues, L. (2015). Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresource Technology, 191, 7-16. https://doi.org/10.1016/j.biortech.2015.05.006

De Queiroz, D. P., Florentino, A. D. O., Bruno, J. C., Da Silva, J. H. D., Riul, A., & Giacometti, J. A. (2016). The use of an e-tongue for discriminating ethanol/water mixtures and determination of their water content. Sensors and Actuators, B: Chemical, 230, 566-570. https://doi.org/10.1016/j.snb.2016.02.080

Detns, R. C., Taken, S., Co, F. S., Smith, F., Co, C., & Titrim-, F. (s. f.). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, (lll).

Diego, S. (2015). Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulosic substrates. Chemical Engineering Science, 149, 1-20. https://doi.org/10.1016/j.ces.2016.04.029

Dwivedi, P., Alavalapati, J. R. R., & Lal, P. (2009). Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 13(3), 174-182. https://doi.org/10.1016/j.esd.2009.06.003

Greene, E. R., Himmel, M. E., Beckham, G. T., & Tan, Z. (2015). Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Advances in Carbohydrate Chemistry and Biochemistry (1.a ed., Vol. 72). Elsevier Inc. https://doi.org/10.1016/bs.accb.2015.08.001

Jamshidian, P., Golparvar, A. R., Naderi, M. R., & Darkhal, H. (2013). Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids ( Zea mays L .). International Journal of Farming and Allied Sciences, 2(S), 1273-1276.

Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., & Wu, N. (2016). The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresource Technology, 200, 8-13. https://doi.org/10.1016/j.biortech.2015.09.096

Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., … Kruus, K. (2019). Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresource Technology, 303-312. https://doi.org/10.1016/j.biortech.2019.02.051

Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies, M., & Zheng, Y. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664-674. https://doi.org/10.1016/j.renene.2018.02.079

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467. https://doi.org/10.1016/j.pecs.2012.03.002

Nan, Y., Yang, M., Xin, D., Li, K., Kuittinen, S., Pappinen, A., & Zhang, J. (2019). Acetone-butanol-ethanol solvents improved enzymatic hydrolysis of pretreated energy grass. Fuel, 245(February), 406-412. https://doi.org/10.1016/j.fuel.2019.02.043

Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., & Ogasawara, W. (2012). A new Zn(II) 2Cys 6-type transcription factor BglR regulates ??-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49(5), 388-397. https://doi.org/10.1016/j.fgb.2012.02.009

Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnology and bioengineering, 41(9), 846-853. https://doi.org/10.1002/bit.260410903

Raele, R., Boaventura, J. M. G., Fischmann, A. A., & Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. Technological Forecasting and Social Change, 87, 205-223. https://doi.org/10.1016/j.techfore.2013.12.010

Rana, V., Eckard, A. D., Teller, P., & Ahring, B. K. (2014). On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresource Technology, 154, 282-289. https://doi.org/10.1016/j.biortech.2013.12.059

Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., & Cao, G. L. (2015). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.03.124

Salanti, A., Zoia, L., Tolppa, E. L., & Orlandi, M. (2012). Chromatographic detection of lignin-carbohydrate complexes in annual plants by derivatization in ionic liquid. Biomacromolecules, 13(2), 445-454. https://doi.org/10.1021/bm2014763

Sánchez Riaño, A. M., Gutiérrez Morales, A. I., Muñoz Hernández, J. A., & Rivera Barrero, C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos Bioethanol Production from agroindustrial lignocellulosic byproducts. Tumbaga, 5, 61-91.

Santos Michel, R. J., Canabarro, N. I., Alesio, C., Maleski, T., Laber, T., Sfalcin, P., … Mazutti, M. A. (2016). Enzymatic saccharification and fermentation of rice processing residue for ethanol production at constant temperature. Biosystems Engineering, 142, 110-116. https://doi.org/10.1016/j.biosystemseng.2015.12.013

Seiboth, B., Verena, C. I., & Seibot, S.-. (2011). Trichoderma reesei: A Fungal Enzyme Producer for Cellulosic Biofuels, Biofuel Production-Recent Developments and Prospects. Biotechnology for biofuels, 6(1), 127. https://doi.org/10.5772/959

Shokrkar, H., Ebrahimi, S., & Zamani, M. (2018). Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel, 228(April 2017), 30-38. https://doi.org/10.1016/j.fuel.2018.04.143

Singhania, R. R. (2011). Production of celluloytic enzymes for the hydrolysis of lignocellulosic biomass. Biofuels, 177-201. https://doi.org/10.1016/B978-0-12-385099-7.00008-5

Sofía, Á., & Paz, P. (s. f.). Efecto de enzimas comerciales en la hidrólisis de residuos de cosecha de la caña de azúcar Pre-tratados con órgano-solvente.

Vásquez, M. (2010). Diseño del sistema de control para un biorreactor de tanque agitado, 14-16.

Wu, X., Zhang, J., Xu, E., Liu, Y., Cheng, Y., Addy, M., … Ruan, R. (2016). Microbial hydrolysis and fermentation of rice straw for ethanol production. Fuel, 180, 679-686. https://doi.org/10.1016/j.fuel.2016.04.087

Zhang, Haibo, Zhang, P., Ye, J., Wu, Y., Liu, J., Fang, W., … Zeng, G. (2018). Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresource Technology, 247, 147-156. https://doi.org/10.1016/j.biortech.2017.09.065

Zhang, Hongdan, Wu, S., & Xie, J. (2017). Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2017.03.001

Published

2020-01-09

Issue

Section

Artículos Científicos

How to Cite

Rice powder waste enzymatic hydrolysis for production of second generation ethanol. (2020). CIENCIA UNEMI, 13(32), 41-50. https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp41-50p