Hidrólisis enzimática de polvillo de arroz para la producción de etanol de segunda generación
DOI:
https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp41-50pPalabras clave:
Azucares reductores, Bioconversión, Celulasas, Cromatografía de Gases, Saccharomyces cerevisiae, etanolResumen
El objetivo de la presente investigación fue hidrolizar el polvillo de arroz a azucares reductores y mediante fermentación alcohólica obtener bioetanol. Se prepararon nueve soluciones de polvillo de arroz molido (8 %, 13 % y 18 %) y agua purificada e inoculados con conidios de Trichoderma spp en concentraciones (0,2 g/L, 0,4 g/L y 0,6 g/L), los cuales se incubaron a 30°C por 144 horas. Mediante el método DNS (3, 5 ácido di nitrosalisilico), se cuantificó los azúcares reductores: tratamiento A: 4,32 ± 0,08%, B: 5,27 ± 0,07%, C: 5,10 ± 0,01%, D: 5,53 ± 0,12%, E: 8,24 ± 0,06%, F: 6,37 ± 0,07%, G: 5,13 ± 0,02%, H: 7,19 ± 0,26%, I: 9,69 ± 0,18% y el etanol mediante cromatografía de gases. El tratamiento que presentó mayor porcentaje de bioconversión fue el tratamiento I (18 % y 0,6 g/L de inóculo), donde la concentración de glucosa, fue 9,88%, y el rendimiento de etanol fue de 5° GL. En conclusión, es posible hidrolizar los carbohidratos totales presente en el polvillo de arroz en azucares reductores y posterior fermentación alcohólica.
Descargas
Referencias
Bonilla, H. R., Armijos, H. A., & Calderón, B. L. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química, 10(1), 79-82.
Chakraborty, S., Chowdhury, S., & Das Saha, P. (2011). Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533-1541. https://doi.org/10.1016/j.carbpol.2011.06.058
Cunha, J. T., Aguiar, T. Q., Romaní, A., Oliveira, C., & Domingues, L. (2015). Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresource Technology, 191, 7-16. https://doi.org/10.1016/j.biortech.2015.05.006
De Queiroz, D. P., Florentino, A. D. O., Bruno, J. C., Da Silva, J. H. D., Riul, A., & Giacometti, J. A. (2016). The use of an e-tongue for discriminating ethanol/water mixtures and determination of their water content. Sensors and Actuators, B: Chemical, 230, 566-570. https://doi.org/10.1016/j.snb.2016.02.080
Detns, R. C., Taken, S., Co, F. S., Smith, F., Co, C., & Titrim-, F. (s. f.). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, (lll).
Diego, S. (2015). Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulosic substrates. Chemical Engineering Science, 149, 1-20. https://doi.org/10.1016/j.ces.2016.04.029
Dwivedi, P., Alavalapati, J. R. R., & Lal, P. (2009). Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 13(3), 174-182. https://doi.org/10.1016/j.esd.2009.06.003
Greene, E. R., Himmel, M. E., Beckham, G. T., & Tan, Z. (2015). Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Advances in Carbohydrate Chemistry and Biochemistry (1.a ed., Vol. 72). Elsevier Inc. https://doi.org/10.1016/bs.accb.2015.08.001
Jamshidian, P., Golparvar, A. R., Naderi, M. R., & Darkhal, H. (2013). Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids ( Zea mays L .). International Journal of Farming and Allied Sciences, 2(S), 1273-1276.
Jiang, L., Zheng, A., Zhao, Z., He, F., Li, H., & Wu, N. (2016). The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Bioresource Technology, 200, 8-13. https://doi.org/10.1016/j.biortech.2015.09.096
Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., … Kruus, K. (2019). Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresource Technology, 303-312. https://doi.org/10.1016/j.biortech.2019.02.051
Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies, M., & Zheng, Y. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664-674. https://doi.org/10.1016/j.renene.2018.02.079
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
Nan, Y., Yang, M., Xin, D., Li, K., Kuittinen, S., Pappinen, A., & Zhang, J. (2019). Acetone-butanol-ethanol solvents improved enzymatic hydrolysis of pretreated energy grass. Fuel, 245(February), 406-412. https://doi.org/10.1016/j.fuel.2019.02.043
Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., & Ogasawara, W. (2012). A new Zn(II) 2Cys 6-type transcription factor BglR regulates ??-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49(5), 388-397. https://doi.org/10.1016/j.fgb.2012.02.009
Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnology and bioengineering, 41(9), 846-853. https://doi.org/10.1002/bit.260410903
Raele, R., Boaventura, J. M. G., Fischmann, A. A., & Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. Technological Forecasting and Social Change, 87, 205-223. https://doi.org/10.1016/j.techfore.2013.12.010
Rana, V., Eckard, A. D., Teller, P., & Ahring, B. K. (2014). On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresource Technology, 154, 282-289. https://doi.org/10.1016/j.biortech.2013.12.059
Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., & Cao, G. L. (2015). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology. https://doi.org/10.1016/j.biortech.2016.03.124
Salanti, A., Zoia, L., Tolppa, E. L., & Orlandi, M. (2012). Chromatographic detection of lignin-carbohydrate complexes in annual plants by derivatization in ionic liquid. Biomacromolecules, 13(2), 445-454. https://doi.org/10.1021/bm2014763
Sánchez Riaño, A. M., Gutiérrez Morales, A. I., Muñoz Hernández, J. A., & Rivera Barrero, C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos Bioethanol Production from agroindustrial lignocellulosic byproducts. Tumbaga, 5, 61-91.
Santos Michel, R. J., Canabarro, N. I., Alesio, C., Maleski, T., Laber, T., Sfalcin, P., … Mazutti, M. A. (2016). Enzymatic saccharification and fermentation of rice processing residue for ethanol production at constant temperature. Biosystems Engineering, 142, 110-116. https://doi.org/10.1016/j.biosystemseng.2015.12.013
Seiboth, B., Verena, C. I., & Seibot, S.-. (2011). Trichoderma reesei: A Fungal Enzyme Producer for Cellulosic Biofuels, Biofuel Production-Recent Developments and Prospects. Biotechnology for biofuels, 6(1), 127. https://doi.org/10.5772/959
Shokrkar, H., Ebrahimi, S., & Zamani, M. (2018). Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel, 228(April 2017), 30-38. https://doi.org/10.1016/j.fuel.2018.04.143
Singhania, R. R. (2011). Production of celluloytic enzymes for the hydrolysis of lignocellulosic biomass. Biofuels, 177-201. https://doi.org/10.1016/B978-0-12-385099-7.00008-5
Sofía, Á., & Paz, P. (s. f.). Efecto de enzimas comerciales en la hidrólisis de residuos de cosecha de la caña de azúcar Pre-tratados con órgano-solvente.
Vásquez, M. (2010). Diseño del sistema de control para un biorreactor de tanque agitado, 14-16.
Wu, X., Zhang, J., Xu, E., Liu, Y., Cheng, Y., Addy, M., … Ruan, R. (2016). Microbial hydrolysis and fermentation of rice straw for ethanol production. Fuel, 180, 679-686. https://doi.org/10.1016/j.fuel.2016.04.087
Zhang, Haibo, Zhang, P., Ye, J., Wu, Y., Liu, J., Fang, W., … Zeng, G. (2018). Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresource Technology, 247, 147-156. https://doi.org/10.1016/j.biortech.2017.09.065
Zhang, Hongdan, Wu, S., & Xie, J. (2017). Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2017.03.001
Publicado
Número
Sección
Licencia
Los autores pueden mantener el copyright, concediendo a la revista el derecho de primera publicación. Alternativamente, los autores pueden transferir el copyright a la revista, la cual permitirá a los autores el uso no-comercial del trabajo, incluyendo el derecho a colocarlo en un archivo de acceso libre.