El Efecto de diversos atributos topográficos sobre el carbono orgánico en varios usos del suelo
DOI:
https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp43-53pPalabras clave:
banano, cacao, modelo digital de elevación, secuestro de carbonoResumen
El objetivo de este estudio fue: cuantificar la cantidad de carbono orgánico del suelo (COS) almacenado en tres profundidades y relacionar varios atributos topográficos sobre la densidad del COS en el sitio El Progreso, provincia El Oro-Ecuador. El estudio se realizó en cuatro usos del suelo: banano, cacao joven, cacao maduro y cacao viejo, con valoresde COS entre cero a 0,10 m de 25,6 g kg, 35,8 g kg, 13,2 g kg y 10,5 g kg respetivamente, y las clases textural predominante son: franco arcillo limosa (0-0,10 cm) y franco arcillosa (0,30-0,40 cm). En cada suelo se delimitó 1 ha para tomar muestras de suelo a: cuatro profundidades cada 10 cm. Los atributos topográficos: area drenada (AS), factor de transporte de sedimentos (LS) y humedad del suelo (WTI), fueron tomados de un modelo de elevación digital (MDE) con una resolución de 12x12m. Los rangos de COS disminuyeron desde parte media de la zona en estudio (banano 38,4-8,1 Mg ha-1; cacao joven 36,20-10,50 Mg ha-1; cacao viejo 13,80-0,94 Mg ha-1) con mayor pendiente (10 a 20 %) hacia la parte baja (cacao maduro 18.80-08.40 Mg ha-1). El uso de suelo cacao joven mostró el mayor valor de AS (10 286,5) y en LS (11,44). También se determinó diferencias significativas con el factor LS por cultivo y se correlacionó con el total de COS. Por tanto, LS (escorrentia) es el atributo topográfico que más influyo en el almacenamiento de COS.
Descargas
Referencias
Barrezueta-Unda, S., Prado-Carpio, E., & Jimbo-Sarmiento, R. (2017). Características del Comercio de cacao a nivel intermediario en la provinica de El Oro-Ecuador. European Scientific Journal, 13(16), 273–282. https://doi.org/10.19044/esj.2017.v13n16p273
Barrezueta-Unda, S., Velepucha, K., Solano, M., & Hurtado, L. (2020). Secuestro de carbono orgánico del suelo en pastizales de la provincia El Oro , Ecuador. Revista Ciencia UNEMI, 13(32), 14–26. http://ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/901/1002
Barrezueta Unda, S., Luna-Romero, E., & Barrera-León, J. (2018). Almacenamiento del carbono en varios sue- los cultivados con cacao en la provincia El Oro-Ecuador. Agroecosistemas, 6(1), 147–154.
Beach, T. P., Ulmer, A., Beach, T., Ulmer, A., Cook, D., Brennan, M. L., Luzzadder-beach, S., Doyle, C., Eshleman, S., & Krause, S. (2018). Geoarchaeology and tropical forest soil catenas of northwestern Belize. Quaternary International, 463(January), 198–217. https://doi.org/10.1016/j.quaint.2017.02.031
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
de Blécourt, M., Corre, M. D., Paudel, E., Harrison, R. D., Brumme, R., & Veldkamp, E. (2017). Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales. SOIL, 3(3), 123–137. https://doi.org/10.5194/soil-3-123-2017
Dorji, T., Odeh, I., & Field, D. (2014). Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas. Land, 3(4), 1232–1250. https://doi.org/10.3390/land3041232
ESRI. (2014). ArcGIS (10.3). www.esri.com
Garcia-Pausas, J., Casals, P., Camarero, L., Huguet, C., Sebastià, M.-T., Thompson, R., & Romanyà, J. (2007). Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry, 82(3), 279–289. https://doi.org/10.1007/s10533-007-9071-9
Hamer, U., Potthast, K., Burneo, J. I., & Makeschin, F. (2013). Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry, 112(1–3), 495–510. https://doi.org/10.1007/s10533-012-9742-z
Koning, G. H. J. De, Veldkamp, E., & López-Ulloa, M. (2003). Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochemical Cycles, 17(4), 1–12. https://doi.org/10.1029/2003GB002099
Liu, F., Zhang, G.-L., Sun, Y.-J., Zhao, Y.-G., & Li, D.-C. (2013). Mapping the Three-Dimensional Distribution of Soil Organic Matter across a Subtropical Hilly Landscape. Soil Science Society of America Journal, 77(4), 1241–1253. https://doi.org/10.2136/sssaj2012.0317
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007
Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the revised universal soil loss equation: simplified method of estimation. Journal of Soil & Water Conservation, 47(5), 423–428.
Moreira de Souza, G., & Trondoli Matricardi, E. A. (2013). Análise compartiva dos modelos de elevação SRTM, ASTER GDEM e TOPODATA para estimar o fator topográfico da USLE. Simpósio Brasileiro de Sensoriamento Remoto, 4435–4442.
Nabiollahi, K., Eskandari, S., Taghizadeh-Mehrjardi, R., Kerry, R., & Triantafilis, J. (2019). Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management, 10(1), 63–77. https://doi.org/10.1080/17583004.2018.1553434
Paul, S., Flessa, H., Veldkamp, E., & López-Ulloa, M. (2008). Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry, 87(3), 247–263. https://doi.org/10.1007/s10533-008-9182-y
Ruiz Potma Goncalves, D., Sá, J. C. de M., Mishra, U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 286, 88–97. https://doi.org/10.1016/j.geoderma.2016.10.021
SAGARPA. (2012). Subíndice de Uso Sustentable del Suelo – Metodología de Cálculo. In Línea de Base del Programa de Sustentabilidad de los Recursos Naturales Subíndice (pp. 1–66). FAO.
Schmidt, F., & Persson, A. (2003). Comparison of DEM data capture and topographic wetness indices. Precision Agriculture, 4(2), 179–192. https://doi.org/10.1023/A:1024509322709
Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013
Senthilkumar, S., Kravchenko, A. N., & Robertson, G. P. (2009). Topography Influences Management System Effects on Total Soil Carbon and Nitrogen. Soil Science Society of America Journal, 73(6), 2059. https://doi.org/10.2136/sssaj2008.0392
Singh, P., & Benbi, D. K. (2018). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 166(March), 171–180. https://doi.org/10.1016/j.catena.2018.04.006
Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006
Startsoft. (2007). Statistica (No. 8). www.statsoft.com
Wang, X., Yoo, K., Wackett, A. A., Gutknecht, J., Amundson, R., & Heimsath, A. (2018). Soil organic carbon and mineral interactions on climatically different hillslopes. Geoderma, 322(2), 71–80. https://doi.org/10.1016/j.geoderma.2018.02.021
Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., & Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science, 53, 15–27.
Wischmeier, W., & Smith, D. (1975). Predicting rainfall erosion losses: Losses from cropland east of the Rocky Mountains. In Predicting rainfall erosion losses: A guide to conservation planning (p. 60 pp). Departament of Agriculture.
Zhang, X., Liu, M., Zhao, X., Li, Y., Zhao, W., Li, A., Chen, S., Chen, S., Han, X., & Huang, J. (2018). Topography and grazing effects on storage of soil organic carbon and nitrogen in the northern China grasslands. Ecological Indicators, 93(June), 45–53. https://doi.org/10.1016/j.ecolind.2018.04.068
Zhao, W., Zhang, R., Huang, C., Wang, B., Cao, H., Koopal, L. K., & Tan, W. (2016). Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena, 139, 191–198. https://doi.org/10.1016/j.catena.2016.01.003
Zhu, M., Feng, Q., Qin, Y., Cao, J., Li, H., & Zhao, Y. (2017). Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA, 152, 94–102. https://doi.org/10.1016/j.catena.2017.01.011
Publicado
Número
Sección
Licencia
Los autores pueden mantener el copyright, concediendo a la revista el derecho de primera publicación. Alternativamente, los autores pueden transferir el copyright a la revista, la cual permitirá a los autores el uso no-comercial del trabajo, incluyendo el derecho a colocarlo en un archivo de acceso libre.