Effect of different topographical attributes on organic carbon in several land uses

Authors

DOI:

https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp43-53p

Keywords:

banana, cocoa, digital elevation model, carbon sequestration

Abstract

The aim of this study was: to quantify the amount of soil organic carbon (SOC) stored at three depths and to relate various topographical attributes to the density of SOC at the site El Progreso, El Oro-Ecuador province. The study was conducted in four land uses: banana, young cocoa, mature cocoa and old cocoa, with  SOC values between zero and 0,10 m of 25,6 g kg, 35,8 g kg, 13,2 g kg and 10,5 g kg respectively, and the predominant textural classes are: loamy clay (0-0.10 cm) and clay loam (0,30-0,40 cm). In each soil 1 ha was delimited to take soil samples at: four depths every 10 cm. The topographic attributes: drained area (AS), sediment transport factor (LS) and soil moisture (WTI), were taken from a digital elevation model (DEM) with a resolution of 12x12m. The SOC ranges decreased from the middle part of the area under study (banana 38,4-8,1 Mg ha-1 ; young cocoa 36,20-10,50 Mg ha-1 ; old cocoa 13,80-0,94 Mg ha-1 ) with higher slope (10-20 %) towards the lower part (mature cocoa 18,80-08,40 Mg ha-1 ). Young cocoa land use showed the highest value of AS (10 286, 5) and in LS (11,44). Significant differences were also determined with the LS factor by crop and correlated with the total SOC. Therefore, LS (runoff) is the topographic attribute that most influenced the storage of SOC.

Downloads

Download data is not yet available.

Author Biography

  • Salomon Alejandro, Universidad Técnica de Machala

    Ingeniero Agronomo, Master en Gerencia de Empresas Agropecuarias, graduado en la Universidad Técnica de Machala. Candidato a Doctor en Ciencias Agrarias y Forestales por la Universidade da Coruña (España). Profesor de Economia Ambiental, proyectos agropecuarios y entomologia

References

Barrezueta-Unda, S., Prado-Carpio, E., & Jimbo-Sarmiento, R. (2017). Características del Comercio de cacao a nivel intermediario en la provinica de El Oro-Ecuador. European Scientific Journal, 13(16), 273–282. https://doi.org/10.19044/esj.2017.v13n16p273

Barrezueta-Unda, S., Velepucha, K., Solano, M., & Hurtado, L. (2020). Secuestro de carbono orgánico del suelo en pastizales de la provincia El Oro , Ecuador. Revista Ciencia UNEMI, 13(32), 14–26. http://ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/901/1002

Barrezueta Unda, S., Luna-Romero, E., & Barrera-León, J. (2018). Almacenamiento del carbono en varios sue- los cultivados con cacao en la provincia El Oro-Ecuador. Agroecosistemas, 6(1), 147–154.

Beach, T. P., Ulmer, A., Beach, T., Ulmer, A., Cook, D., Brennan, M. L., Luzzadder-beach, S., Doyle, C., Eshleman, S., & Krause, S. (2018). Geoarchaeology and tropical forest soil catenas of northwestern Belize. Quaternary International, 463(January), 198–217. https://doi.org/10.1016/j.quaint.2017.02.031

Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834

de Blécourt, M., Corre, M. D., Paudel, E., Harrison, R. D., Brumme, R., & Veldkamp, E. (2017). Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales. SOIL, 3(3), 123–137. https://doi.org/10.5194/soil-3-123-2017

Dorji, T., Odeh, I., & Field, D. (2014). Vertical Distribution of Soil Organic Carbon Density in Relation to Land Use/Cover, Altitude and Slope Aspect in the Eastern Himalayas. Land, 3(4), 1232–1250. https://doi.org/10.3390/land3041232

ESRI. (2014). ArcGIS (10.3). www.esri.com

Garcia-Pausas, J., Casals, P., Camarero, L., Huguet, C., Sebastià, M.-T., Thompson, R., & Romanyà, J. (2007). Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry, 82(3), 279–289. https://doi.org/10.1007/s10533-007-9071-9

Hamer, U., Potthast, K., Burneo, J. I., & Makeschin, F. (2013). Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry, 112(1–3), 495–510. https://doi.org/10.1007/s10533-012-9742-z

Koning, G. H. J. De, Veldkamp, E., & López-Ulloa, M. (2003). Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochemical Cycles, 17(4), 1–12. https://doi.org/10.1029/2003GB002099

Liu, F., Zhang, G.-L., Sun, Y.-J., Zhao, Y.-G., & Li, D.-C. (2013). Mapping the Three-Dimensional Distribution of Soil Organic Matter across a Subtropical Hilly Landscape. Soil Science Society of America Journal, 77(4), 1241–1253. https://doi.org/10.2136/sssaj2012.0317

Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007

Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the revised universal soil loss equation: simplified method of estimation. Journal of Soil & Water Conservation, 47(5), 423–428.

Moreira de Souza, G., & Trondoli Matricardi, E. A. (2013). Análise compartiva dos modelos de elevação SRTM, ASTER GDEM e TOPODATA para estimar o fator topográfico da USLE. Simpósio Brasileiro de Sensoriamento Remoto, 4435–4442.

Nabiollahi, K., Eskandari, S., Taghizadeh-Mehrjardi, R., Kerry, R., & Triantafilis, J. (2019). Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Management, 10(1), 63–77. https://doi.org/10.1080/17583004.2018.1553434

Paul, S., Flessa, H., Veldkamp, E., & López-Ulloa, M. (2008). Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry, 87(3), 247–263. https://doi.org/10.1007/s10533-008-9182-y

Ruiz Potma Goncalves, D., Sá, J. C. de M., Mishra, U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 286, 88–97. https://doi.org/10.1016/j.geoderma.2016.10.021

SAGARPA. (2012). Subíndice de Uso Sustentable del Suelo – Metodología de Cálculo. In Línea de Base del Programa de Sustentabilidad de los Recursos Naturales Subíndice (pp. 1–66). FAO.

Schmidt, F., & Persson, A. (2003). Comparison of DEM data capture and topographic wetness indices. Precision Agriculture, 4(2), 179–192. https://doi.org/10.1023/A:1024509322709

Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148. https://doi.org/10.1016/j.geoderma.2007.05.013

Senthilkumar, S., Kravchenko, A. N., & Robertson, G. P. (2009). Topography Influences Management System Effects on Total Soil Carbon and Nitrogen. Soil Science Society of America Journal, 73(6), 2059. https://doi.org/10.2136/sssaj2008.0392

Singh, P., & Benbi, D. K. (2018). Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 166(March), 171–180. https://doi.org/10.1016/j.catena.2018.04.006

Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006

Startsoft. (2007). Statistica (No. 8). www.statsoft.com

Wang, X., Yoo, K., Wackett, A. A., Gutknecht, J., Amundson, R., & Heimsath, A. (2018). Soil organic carbon and mineral interactions on climatically different hillslopes. Geoderma, 322(2), 71–80. https://doi.org/10.1016/j.geoderma.2018.02.021

Wilcke, W., Yasin, S., Abramowski, U., Valarezo, C., & Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science, 53, 15–27.

Wischmeier, W., & Smith, D. (1975). Predicting rainfall erosion losses: Losses from cropland east of the Rocky Mountains. In Predicting rainfall erosion losses: A guide to conservation planning (p. 60 pp). Departament of Agriculture.

Zhang, X., Liu, M., Zhao, X., Li, Y., Zhao, W., Li, A., Chen, S., Chen, S., Han, X., & Huang, J. (2018). Topography and grazing effects on storage of soil organic carbon and nitrogen in the northern China grasslands. Ecological Indicators, 93(June), 45–53. https://doi.org/10.1016/j.ecolind.2018.04.068

Zhao, W., Zhang, R., Huang, C., Wang, B., Cao, H., Koopal, L. K., & Tan, W. (2016). Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena, 139, 191–198. https://doi.org/10.1016/j.catena.2016.01.003

Zhu, M., Feng, Q., Qin, Y., Cao, J., Li, H., & Zhao, Y. (2017). Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA, 152, 94–102. https://doi.org/10.1016/j.catena.2017.01.011

Published

2021-01-15

Issue

Section

Artículos Científicos

How to Cite

Effect of different topographical attributes on organic carbon in several land uses. (2021). CIENCIA UNEMI, 14(35), 43-53. https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp43-53p

Most read articles by the same author(s)