Huella ecológica y zonas bioproductivas. Una mirada desde la economía ecuatoriana

Autores/as

DOI:

https://doi.org/10.29076/issn.2528-7737vol17iss44.2024pp52-64p

Palabras clave:

Huella ecológica, biocapacidad, pastizales, zonas de pesca, recursos naturales

Resumen

La huella ecológica es una medida del consumo de recursos naturales para satisfacer las necesidades de la población o la cantidad de biocapacidad para absorber los desechos generados y absorción de CO2 por el ser humano; se mide en hectáreas globales (hag). El presente estudio tiene como finalidad determinar el grado de afectación en hectáreas globales producidas en el Ecuador desde el año 2008 hasta el año 2018. Se trata de una investigación de corte longitudinal de tipo descriptiva-explicativa, no experimental, con muestreo no probabilístico. Los datos fueron recogidos del Ministerio del Ambiente, Agua y Transición Ecológica, desde el apartado denominado “Sistema Nacional de Indicadores Ambientales y Sostenibilidad” (SINIAS). Para su análisis se consideró la estadística descriptiva, correlacional y multivariante a través de un análisis de correspondencias. Se concluye que a lo largo del tiempo la afectación a las zonas bioproductivas sigue en crecimiento y que la huella ecológica ecuatoriana para el año 2022, tiene un superávit de 0,2 hag per cápita.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Dayana Ruiz Erazo, Universidad Técnica de Ambato

    Economista por la Universidad Técnica de Ambato

  • Alex Santiago Mantilla Miranda, Escuela Superior Politécnica de Chimborazo

    Ingeniero en Electrónica y Control

    Magister en Electrónica y Control

    Magister en Matemática aplicada a la docencia

    Docente investigador, varias publicaciones 

Referencias

Ahmed, Z., Zhang, B., & Cary, M. (2021). Linking economic globalization, economic growth, financial development, and ecological footprint: Evidence from symmetric and asymmetric ARDL. Ecological Indicators, 121, 1–12. https://doi.org/10.1016/j.ecolind.2020.107060

Alnour, M., Ali, M., Abdalla, A., Abdelrahman, R., & Khalil, H. (2022). How do urban population growth, hydropower consumption and natural resources rent shape environmental quality in Sudan? World Development Sustainability, 1, 1–16. https://doi.org/10.1016/j.wds.2022.100029

Amer, E. A. A. A., Meyad, E. M. A., Gao, Y., Niu, X., Chen, N., Xu, H., & Zhang, D. (2022). Exploring the link between natural resources, urbanization, human capital, and ecological footprint: A case of GCC countries. Ecological Indicators, 144, 1–10. https://doi.org/10.1016/j.ecolind.2022.109556

Balsalobre-Lorente, D., Topaloglu, E. E., Nur, T., & Evcimen, C. (2023). Exploring the linkage between financial development and ecological footprint in APEC countries: A novel view under corruption perception and environmental policy stringency. Journal of Cleaner Production, 414, 1–20. https://doi.org/10.1016/j.jclepro.2023.137686

Banco Central del Ecuador. (2023). Informe de resultados de comercio exterior. Primer trimestre de 2023. https://contenido.bce.fin.ec/documentos/Estadisticas/SectorExterno/ComercioExterior/informes/ResultCE_012023.pdf

Bashir, M. A., Dengfeng, Z., Filipiak, B. Z., Bilan, Y., & Vasa, L. (2023). Role of economic complexity and technological innovation for ecological footprint in newly industrialized countries: Does geothermal energy consumption matter? Renewable Energy, 217, 1–8. https://doi.org/10.1016/j.renene.2023.119059

Bi, M., Yao, C., Xie, G., Liu, J., & Qin, K. (2021a). Improvement and application of the three-dimensional ecological footprint model. Ecological Indicators, 125, 1–8. https://doi.org/10.1016/j.ecolind.2021.107480

Bi, M., Yao, C., Xie, G., Liu, J., & Qin, K. (2021b). Improvement and application of the three-dimensional ecological footprint model. Ecological Indicators, 125. https://doi.org/10.1016/j.ecolind.2021.107480

Casals Miralles, C., Barioni, D., Mancini, M. S., Colón Jordà, J., Boy Roura, M., Ponsá Salas, S., Llenas Argelaguet, L., & Galli, A. (2023). The Footprint of tourism: a review of Water, Carbon, and Ecological Footprint applications to the tourism sector. In Journal of Cleaner Production (Vol. 422, pp. 1–16). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2023.138568

Dai, J., Ouyang, Y., Hou, J., & Cai, L. (2023). Long-time series assessment of the sustainable development of Xiamen City in China based on ecological footprint calculations. Ecological Indicators, 148, 1–8. https://doi.org/10.1016/j.ecolind.2023.110130

Dembińska, I., Kauf, S., Tłuczak, A., Szopik-Depczyńska, K., Marzantowicz, Ł., & Ioppolo, G. (2022). The impact of space development structure on the level of ecological footprint - Shift share analysis for European Union countries. Science of the Total Environment, 851, 1–12. https://doi.org/10.1016/j.scitotenv.2022.157936

Doytch, N. (2020). The impact of foreign direct investment on the ecological footprints of nations. Environmental and Sustainability Indicators, 8, 1–13. https://doi.org/10.1016/j.indic.2020.100085

Erdogan, S., & Okumus, I. (2021). Stochastic and club convergence of ecological footprint: An empirical analysis for different income group of countries. Ecological Indicators, 121, 1–13. https://doi.org/10.1016/j.ecolind.2020.107123

García de Salamone, I. E. (2022). Microbiology, Bioeconomy and Sustainable Development Goals. Revista Argentina de Microbiología, 54, 71–73. https://doi.org/10.1016/j.ram.2022.05.007

Global Footprint Network. (2023). Ecological Footprint. Global Footprint Network. https://www.footprintnetwork.org/our-work/ecological-footprint/

González Gaudiano, E. J., Meira-Cartea, P. Á., & Martínez-Fernández, C. N. (2015). Sustentabilidad y Universidad: retos, ritos y posibles rutas. Revista de La Educación Superior, RESU, 44(175), 69–93.

Ihobe. (2019). Huella ecológica de Euskadi. Sociedad Pública de Gestión Ambiental.

Kok, A. L., & Barendregt, W. (2021). Understanding the adoption, use, and effects of ecological footprint calculators among Dutch citizens. Journal of Cleaner Production, 326, 1–14. https://doi.org/10.1016/j.jclepro.2021.129341

Kong, F., Cui, W., & Xi, H. (2021). Spatial–temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: Case study of 11 coastal provinces in China. Ecological Indicators, 132, 1–15. https://doi.org/10.1016/j.ecolind.2021.108271

Li, P., Zhang, R., & Xu, L. (2021). Three-dimensional ecological footprint based on ecosystem service value and their Drivers: A case study of Urumqi. Ecological Indicators, 131, 1–14. https://doi.org/10.1016/j.ecolind.2021.108117

Li, X., Li, S., Li, C., Shi, J., & Wang, N. (2023). The impact of high-quality development on ecological footprint: An empirical research based on STIRPAT model. Ecological Indicators, 154, 1–14. https://doi.org/10.1016/j.ecolind.2023.110881

Liu, T., Wang, H. Z., Wang, H. Z., & Xu, H. (2021). The spatiotemporal evolution of ecological security in China based on the ecological footprint model with localization of parameters. Ecological Indicators, 126, 1–11. https://doi.org/10.1016/j.ecolind.2021.107636

Lv, T., Zeng, C., Stringer, L. C., Yang, J., & Wang, P. (2021). The spatial spillover effect of transportation networks on ecological footprint. Ecological Indicators, 132, 1–14. https://doi.org/10.1016/j.ecolind.2021.108309

Ministerio del Ambiente del Ecuador. (2017). Boletín Nro. 1. Huella ecológica del Ecuador. Principales avances y resultados.

Mondragón Barrera, M. A. (2014). Uso de la correlación de Spearman en un estudio de intervención en fisioterapia. Movimiento Científico, 8(1), 98–104. https://revmovimientocientifico.ibero.edu.co/article/view/mct.08111/645

Salman, M., Zha, D., & Wang, G. (2022). Indigenous versus foreign innovation and ecological footprint: Dynamic threshold effect of corruption. Environmental and Sustainability Indicators, 14, 1–14. https://doi.org/10.1016/j.indic.2022.100177

Świąder, M., Lin, D., Szewrański, S., Kazak, J. K., Iha, K., van Hoof, J., Belčáková, I., & Altiok, S. (2020). The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environmental Science and Policy, 105, 56–74. https://doi.org/10.1016/j.envsci.2019.12.010

Tobasura Acuña, I. (2008). Huella ecológica y biocapacidad: indicadores biofísicos para la gestión ambiental. El caso de Manizales, Colombia. Luna Azul, 26, 119–136. https://doi.org/10.17151/luaz.2008.26.8

Uribe-Saldarriaga, C. M. (2014a). Green marketing of a golden company. Estudios Gerenciales, 30(130), 95–100. https://doi.org/10.1016/j.estger.2013.11.003

Uribe-Saldarriaga, C. M. (2014b). Mercadeo verde de una empresa dorada. Estudios Gerenciales, 30(130), 95–100. https://doi.org/10.1016/j.estger.2013.11.003

Xie, B., Zhang, X., Lu, J., Liu, F., & Fan, Y. (2022). Research on ecological evaluation of Shanghai port logistics based on emergy ecological footprint models. Ecological Indicators, 139, 1–11. https://doi.org/10.1016/j.ecolind.2022.108916

Yang, Y., Wang, H., Li, Y., Zhang, L., & Zhao, Y. (2023). New green development indicator of water resources system based on an improved water resources ecological footprint and its application. Ecological Indicators, 148, 1–8. https://doi.org/10.1016/j.ecolind.2023.110115

Zhang, R., Li, P., & Xu, L. (2022). Evaluation and analysis of ecological security based on the improved three-dimensional ecological footprint in Shaanxi Province, China. Ecological Indicators, 144, 1–15. https://doi.org/10.1016/j.ecolind.2022.109483

Descargas

Publicado

2024-04-13

Cómo citar

Huella ecológica y zonas bioproductivas. Una mirada desde la economía ecuatoriana. (2024). CIENCIA UNEMI, 17(44), 52-64. https://doi.org/10.29076/issn.2528-7737vol17iss44.2024pp52-64p