Economic, environmental and health impacts of aerial spraying of banana plantations: A literature review
DOI:
https://doi.org/10.29076/issn.2602-8360vol9iss17.2025pp5-20pKeywords:
aerial spraying, pesticides, banana, public health, environmental impact, agribusiness, EcuadorAbstract
Aerial spraying in banana plantations generates significant economic, environmental, and public health impacts. This study presents a critical review of the scientific literature to analyze the effects of this practice in rural contexts, with an emphasis on producing countries such as Ecuador. From an economic perspective, aerial spraying has been shown to increase productivity and pest control efficiency, although it entails external costs, including adverse effects on the health of agricultural workers and nearby communities. Environmentally, reported consequences include soil, air, and water pollution, biodiversity loss, and greenhouse gas emissions. In terms of health, pesticide exposure is associated with respiratory illnesses, genotoxic effects, spontaneous abortions, and low birth weight. The lack of effective regulation, inadequate use of protective equipment, and limited awareness of associated risks exacerbate the issue. The review underscores the urgent need to implement sustainable agricultural practices, enforce stricter regulations, and establish monitoring systems to mitigate risks to human health and the environment.
Downloads
References
[1] Dale J. L. Banana bunchy top: An economically important tropical plant virus disease. Adv. Virus Res. 1987; 33(C): 301–325.
[2] Barraza D., Jansen K., Wesseling C., and B. Van W. de Joode. Pesticide risk perceptions among bystanders of aerial spraying on bananas in Costa Rica. Environ. Res. 2020; 189: 109877.
[3] Hutter H. P. et al. Health symptoms related to pesticide use in farmers and laborers of ecological and conventional banana plantations in Ecuador. Int. J. Environ. Res. Public Health. 2021;18(3): 1–12.
[4] Prescott-allen R. Sustaining life in frontier land. Country report 2: Costa Rica. People Plane. 1993; 2(4):23–25.
[5] Karamura E. B. and Gold C. S. The elusive banana weevil Cosmopolites sordidus Germar. Acta Horticulturae. 2000; 540:471–485.
[6] L. Tarsiguel, E. Dorey, M. Dorel, and N. Andrieu, “Alternative practices to pesticide use in the Guadeloupe banana belt: Do biophysical constraints limit agroecological transitions?,” Agric. Syst. 2023; 210: 103710
[7] Djamin M., Salim Dasuki A., Yusak Lubis A., and Alyuswar F. Application of photovoltaic systems for increasing villagers’ income,” Renew. Energy. 2001; 22(1–3): 263–267.
[8] Sharawi, H. A. (2006). Optimal land-use allocation in central Sudan. Forest Policy and Economics, 8(1), 10–21.
[9] Nadaraja, D., Lu, C., & Islam, M. M. The sustainability assessment of plantation agriculture: A systematic review of sustainability indicators. Sustainable Production and Consumption. 2021; 26: 892–910.
[10] Ganssmann, M., Goswami, A., & Ulrichs, C. The role of fruit trees in coffee agroforestry systems in Costa Rica. International Journal of Ecology and Environmental Sciences. 2007; 33(4): 255–261.
[11] Jimenez M., Van der veken L., H. Neirynck, H. Rodríguez, O. Ruiz, and R. Swennen. Organic banana production in Ecuador: Its implications on black Sigatoka development and plant-soil nutritional status. Renew. Agric. Food Syst 2007; 22(4): 297–306.
[12] Zainol, Salihon J., and Abdul-Rahman R. Biogas production from banana stem waste: Optimisation of 10 l sequencing batch reactor. IEEE International Conference on Sustainable Energy Technologies, ICSET, 2008: 357–359.
[13] Ali N. and Khan A. Evaluation of the toxicity of selected pesticides on Raoiella indica Hirst (Acari: Tenuipalpidae). Int. Pest Control. 2010; 52(6): 331–334.
[14] Kane E. C., Ochoa R., Mathurin G., Erbe E. F., and Beard J. J. Raoiella indica (Acari: Tenuipalpidae): An exploding mite pest in the neotropics. Exp. Appl. Acarol 2012; 57(3): 215–225.
[15] Jamaluddin M. F., Zainol N., Abdul-Rahmanb R., Abdul-Ghaffar N. F., and Salihon J. Comparison of anaerobic lignin degradation of banana stem waste using mixed culture from Malaysian soil and pure strains from SOU, culture. Asian J. Microbiol. Biotechnol. Environ. Sci. 2014;16(3): 551–560
[16] Chen Y. et al. Predicting hotspots of human-elephant conflict to inform mitigation strategies in Xishuangbanna, Southwest China, PLoS One. 2016; 11(9)
[17] Cano Sanchiz J. M. Mamita Yunai, a North American fruit company in Central America: The case of Palmar sur (Costa Rica). Memorias; 2017; 33: 88–119.
[18] Adsal K. A., ÜÇTUĞ F. G., and Arikan O. A. Environmental life cycle assessment of utilizing stem waste for banana production in greenhouses in Turkey. Sustain. Prod. Consum. 2020; 22: 110–125.
[19] Zhang C., Valente J., Kooistra L., Guo L., and Wang W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis. Agric. 2021; 22(6): 2007–2052.
[20] A. P. Singh, P. Sahu, A. Chug, and D. Singh. A Systematic Literature Review of Machine Learning Techniques Deployed in Agriculture: A Case Study of Banana Crop. IEEE Access. 2022; 10: 87333–87360.
[21] Blomme G. et al. Agroecological integration of shade- and drought-tolerant food/feed crops for year-round productivity in banana-based systems under rain-fed conditions in Central Africa. Acta Hortic 2018; 1196: 41–54.
[22] Boschiero M., De Laurentiis V., Caldeira C., and Sala S. Comparison of organic and conventional cropping systems: A systematic review of life cycle assessment studies. Environ. Impact Assess. Rev 2023; 102: 107187.
[23] El-Fadel, M., Deeb, T., Alameddine, I., Zurayk, R., & Chaaban, J. Impact of groundwater salinity on agricultural productivity with climate change implications. International Journal of Sustainable Development and Planning. 2018;13(3): 445–456.
[24] Baboudjian, M., Pinol, J., Ly, C., Boissier, R., & Lechevallier, É. Endocrine disrupters in urology: What information can we communicate to our patients? Progrès en Urologie - FMC. 2019; 29(2): F33–F39.
[25] De Oliveira Gomes, H., Menezes, J. M. C., da Costa, J. G. M., Coutinho, H. D. M., Teixeira, R. N. P., & do Nascimento, R. F. Evaluating the presence of pesticides in bananas: An integrative review. Ecotoxicology and Environmental Safety. 2020; 189: 110016.
[26] Chen, Y., Zhou, J., Lv, M., Liang, Z., Parsek, M. R., & Zhang, L.-H. Systematic analysis of c-di-GMP signaling mechanisms and biological functions in Dickeya zeae EC1. mBio. 2020; 11(6): 1–19.
[27] Zakaria, L. Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops: A review. Agriculture. 2021; 11(4).
[28] urco, C., Junior, A. C. P., Teixeira, E. R., & Mateus, R. Optimisation of compressed earth blocks (CEBs) using natural origin materials: A systematic literature review. Construction and Building Materials. 2021; 309: 125140.
[29] Ewane, E. B. Land use land cover change and the resilience of social-ecological systems in a sub-region in South West Cameroon. Environmental Monitoring and Assessment. 2021;193(6).
[30] B. O. Olivares, A. Vega, M. A. Rueda Calderón, E. Montenegro-Gracia, M. Araya-Almán, and E. Marys, “Prediction of banana production using epidemiological parameters of black sigatoka: An application with random forest,” Sustainability. 2022; 14(21): 14123.
[31] Penot É. et al. Agronomic and socio-economic options for rubber intercropping in Sri Lanka: a forward analysis in the Moneragala and Ampara regions. Bois Forets des Trop. 2023; 356(2): 43–65.
[32] Leonel S. et al. Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability. Horticulturae. 2024;10(9).
[33] Bhat Y. et al. Vegetation disturbance and regrowth dynamics in shifting cultivation landscapes. Sci. Rep. 2024; 14(1).
[34] Coye M. J., Lowe J. A., and Maddy K. T. Biological monitoring of agricultural workers exposed to pesticides: I. Cholinesterase activity determinations. J. Occup. Environ. Med. 1986; 28(8): 619–627.
[35] Coral C. and Mithöfer D. The backbone of agrifood value chain resilience: Innovation in the Ecuadorian banana value chain from a historical perspective. World Dev. Perspect. 2023; 29.
[36] Da Silva Santos S., Silva J. V, Boniface P. K., and Giarolla J. Amazon Rainforest: A Natural Source for New Therapeutic Alternatives against Neglected Tropical Diseases. Nat. Prod. J . 2022;12(6): 20–34.
[37] Santamaría García A. Reviewing Latin American railway historiography: New trends and research avenues. J. Transp. Hist. 2022; 43(3): 479–502.
[38] Ngeno E. C.et al. Sustainable re-utilization of waste materials as adsorbents for water and wastewater treatment in Africa: Recent studies, research gaps, and way forward for emerging economies. Environ. Adv. 2022: 100282.
[39] Buck L., Scherr S., Trujillo L., Mecham J., and Fleming M. Using integrated landscape management to scale agroforestry: examples from Ecuador. Sustain. Sci. 2020; 15:1401–1415.
[40] Zambrano-Ganchozo G., Rodriguez-Ramos A., Escobar-Segovia K., Duque-Cordova L., and Guzmán-Cadena D. Neurotoxic Effects on Banana Workers Exposed to Agrochemicals: Ecuador Case Study. XV Multidisciplinary International Congress on Science and Technology. 2021; 327–337.
[41] De A. and Singh S. P. Analysis of fuzzy applications in the agri-supply chain: A literature review. J. Clean. Prod. 2021; 283: 124577.
[42] Sanchez F. A. C., Boudaoud H., Camargo M., and Pearce J. M. Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. J. Clean. Prod. 2020; 264: 121602.
[43] Cambien N. et al. Using the soil and water assessment tool to simulate the pesticide dynamics in the data scarce Guayas river basin, Ecuador. Water. 2020; 12(3): 696.
[44] Mihai R. A., Melo Heras E. J., Terán Maza V. A., Espinoza Caiza I. A., Pinto Valdiviezo E. A., and Catana R. D. The Panoramic View of Ecuadorian Soil Nutrients (Deficit/Toxicity) from Different Climatic Regions and Their Possible Influence on the Metabolism of Important Crops. Toxics. 2023; 11(2):123.
[45] Veres A. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environ. Sci. Pollut. Res. 2020; 27: 29867–29899.
[46] Pathak H., Igathinathane C., Zhang Z., Archer D., and Hendrickson J. A review of unmanned aerial vehicle-based methods for plant stand count evaluation in row crops. Comput. Electron. Agric. 2022; 198: 107064.
[47] T. P. da Costa et al., “A systematic review of real-time monitoring technologies and its potential application to reduce food loss and waste: Key elements of food supply chains and IoT technologies,” Sustainability. 2022; 15(1): 614.
[48] B. W. Brisbois, J. M. Spiegel, and L. Harris, “Health, environment and colonial legacies: situating the science of pesticides, bananas and bodies in Ecuador,” Soc. Sci. Med. 2019; 239: 112529.
[49] J. Zhou, S. Liang, Y. Cui, Y. Rong, J. Song, and D. Lv, “Study on environmental behaviour of fluopyram in different banana planting soil,” Sci. Rep. 2021; 11(1): 15346.
[50] J.-M. Bonmatin et al., “Residues of neonicotinoids in soil, water and people’s hair: A case study from three agricultural regions of the Philippines,” Sci. Total Environ. 2021; 757: 143822.
[51] L. Riascos-Flores et al., “Polluted paradise: Occurrence of pesticide residues within the urban coastal zones of Santa Cruz and Isabela (Galapagos, Ecuador),” Sci. Total Environ. 2021; 763: 142956.
[52] A. Deknock et al., “Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador),” Sci. Total Environ. 2019; 646: 996–1008.
[53] J. A. Kapeleka, E. Sauli, O. Sadik, and P. A. Ndakidemi, “Co-exposure risks of pesticides residues and bacterial contamination in fresh fruits and vegetables under smallholder horticultural production systems in Tanzania,” PLoS One. 2020; 15(7): e0235345.
[54] B. Alhanti et al., “Environmental exposures contribute to respiratory and allergic symptoms among women living in the banana growing regions of Costa Rica,” Occup. Environ. Med. 2022; 79(7): 469–476.
[55] J. Calzada, M. Gisbert, and B. Moscoso, “The hidden cost of bananas: The effects of pesticides on newborns’ health,” J. Assoc. Environ. Resour. Econ. 2023; 10(6): 1623–1663.
[56] L. Bonisoli, E. Galdeano-Gómez, L. Piedra-Muñoz, and J. C. Pérez-Mesa, “Benchmarking agri-food sustainability certifications: Evidences from applying SAFA in the Ecuadorian banana agri-system,” J. Clean. Prod. 2019; 236: 117579.
[57] L. Coltro and T. U. Karaski, “Environmental indicators of banana production in Brazil: Cavendish and Prata varieties,” J. Clean. Prod. 2019; 207: 363–378.
[58] S. Fuhrimann et al., “Exposure to pesticides and health effects on farm owners and workers from conventional and organic agricultural farms in Costa Rica: protocol for a cross-sectional study,” JMIR Res. Protoc. 2019; 8(1): e10914,.
[59] H.-P. Hutter et al., “Indicators of genotoxicity in farmers and laborers of ecological and conventional banana plantations in Ecuador,” Int. J. Environ. Res. Public Health. 2020; 17(4): 1435.
[60] J. S. Okonya et al., “Pesticide use practices in root, tuber, and banana crops by smallholder farmers in Rwanda and Burundi,” Int. J. Environ. Res. Public Health. 2019; 16(3): 400.
[61] J. Wu et al., “Dissipation and residue of tebuconazole in banana (Musa nana L.) and dietary intake risk assessment for various populations,” Int. J. Environ. Anal. Chem. 2022; 1–11.
[62] J. M. Méndez et al., “Pesticide Residues in Bananas from the Canary Islands,” Foods. 2023; 12(3): 437.
[63] D. Romero-Estévez, G. S. Yánez-Jácome, K. Simbaña-Farinango, and H. Navarrete, “Distribution, contents, and health risk assessment of cadmium, lead, and nickel in bananas produced in Ecuador,” Foods. 2019; 8(8): 330.
[64] M. Almutairi, T. Alsaleem, H. Al Herbish, A. A. Al Sayari, and A. M. Alowaifeer, “LC-MS/MS and GC-MS/MS analysis of pesticide residues in Ecuadorian and Filipino Cavendish bananas imported into Saudi Arabia,” Food Addit. Contam. Part A. 2021; 38(8): 1376–1385.
[65] D. Boucaud-Maitre et al., “Human exposure to banned pesticides reported to the French Poison Control Centers: 2012–2016,” Environ. Toxicol. Pharmacol. 2019;. 69: 51–56.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 FACSALUD-UNEMI

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Todos los artículos de la Revista FACSalud UNEMI son difundidos bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Los autores mantienen los derechos de autor, y, por lo tanto, son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes: Reconocer los créditos de la obra especificada por el autor e indicar si se realizaron cambios (puede hacerlo de cualquier forma razonable, pero no de una manera que sugiera que el autor respalda el uso que hace de su obra. No utilizar la obra para fines comerciales. En caso de remezcla, transformación o desarrollo, no puede distribuirse el material modificado.