La huella ecológica dietética de los animales domésticos en Guayaquil, Ecuador

Palabras clave: animales, Guayaquil, GEI, HEA, mascotas, medio ambiente


Como indicador de desarrollo sostenible, la huella ecológica ha logrado proporcionar una base para discutir los impactos ambientales del consumo humano. Los seres humanos son el origen de numerosas actividades contaminantes en la Tierra y son los principales impulsores del cambio climático. Sin embargo, se han realizado muy pocas investigaciones sobre los impactos ambientales de los animales, especialmente los animales domésticos, como perros y gatos, quienes necesitan cantidades significativas de comida para mantener sus necesidades energéticas diarias. Por lo tanto, la huella ecológica animal (HEA) dietética podría servir como un indicador útil para evaluar los impactos de las mascotas en el medio ambiente. En el presente artículo, explicamos el impacto ambiental de los perros y gatos de compañía cuantificando su HEA y las emisiones de gases de efecto invernadero (GEI) de acuerdo con los datos primarios recopilados en los tres Distritos de la ciudad Guayaquil en coordinación con la Facultad de Medicina Veterinaria y Zootecnia de la Universidad de Guayaquil y de la Unidad de Bienestar Animal de la Alcaldía de Guayaquil; los resultados muestran que la HEA dietética de perros y gatos de compañía con comida seca comercial en el distrito 3 o en el  distrito 1 era aproximadamente dos veces mayor que el de los distrito 2. Se concluye que la mayoría de los perros y gatos de compañía en los Distritos 1, 2 y 3 de Guayaquil consumen más energía de la que realmente necesitan para mantener una actividad normal, lo que afecta en las emisiones de GEI y la HEA de la dieta.


La descarga de datos todavía no está disponible.


Amiot C BBMP. People and companion animals: It takes two to tango. BioScience. 2016; (66): 552–560.

Wood L GCBBM. The pet connection: Pets as a conduit for social capital? Social Science and Medicine. 2005;(61): 1159–1173.

Beverland MB FFLE. Exploring the dark side of pet ownership: Status-and control-based pet consumption. Journal of Business Research. 2008;(61): 490–496.

Cutt H GCBKMBV. Dog ownership, health and physical activity: A critical review of the literature. Health and Place. 2007;(13): 261–272.

CP. F. Battered women and their animal companions: Symbolic interaction between human and nonhuman animals. Society and Animals. 2000;(8): 99–127.

Martens P ESMJWJ. The emotional lives of companion animals: Attachment and subjective claims by owners of cats and dogs. Anthrozoös. 2016;(29): p. 73–88.

Su B KNMP. How Japanese companion dog and cat owners’ degree of attachment relates to the attribution of emotions to their animals. PLOS ONE. 2018a;(13).

Fleeman LM OE. Animal Physiotherapy: Assessment, Treatment and Rehabilitation of Animals. Applied animal nutrition. 2007; 14–31.

Swanson KS CRYTAJBP. Nutritional sustainability of pet foods. Advances in Nutrition: An International Review Journal. 2013;(4): 141–150.

GS. O. Environmental impacts of food consumption by dogs and cats. PLOS ONE. 2017;(12).

Wackernagel M RW. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers. 1998b.

Csutora M MZTA. Sustainable consumption: From escape strategies towards real alternatives. Sustainable Consumption Conference. Sustainable Consumption, Production, and Communication. 2009.

Vale V. Time to Eat the Dog? The Real Guide to Sustainable Living. En Vale V. Time to Eat the Dog? The Real Guide to Sustainable Living.: Thames and Hudson.; 2009.

Pimentel D PM. Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition. 2003;(78): 660S–663S.

Reijnders L SS. Quantification of the environmental impact of different dietary protein choices. American Journal of Clinical Nutrition. 2003;(78): 664S–668S.

Wirsenius S ACBG. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems. 2010;(103): 621–638.

Su B MPESMJ. A neglected predictor of environmental damage: The ecological paw print and carbon emissions of food consumption by companion dogs and cats in China. Journal of Cleaner Production. 2018b;(194): 1–11.

Su B MP. Environmental impacts of food consumption by companion dogs and cats in Japan. Ecological Indicators. 2018;(93): 1043–1049.

Hammerly T DB. The environmental impact of pets. Green Teacher. 2012;(95): 25-28.

Leenstra F VT. Indication of the ecological foot print of companion animals: First survey, focussed on cats, dogs and horses in the Netherlands. Wageningen UR Livestock Research. 2011;(Report no 410650).

D. H. Animal welfare: The consumer and the food industry. British Food Journal. 1995;(97): 3–7.

R. A. Polluting pets: The devastating impact of man’s best friend. Independent..

L. P. How big is a dog’s eco-pawprint? Audobon..

K. R. How green is your pet? New Scientist. 2009;(204): 46–47.

C. WD. Sightline Institute. [Online]; 2009. Disponible en:

NS. R. Slate. [Online].; 2010. Disponible en:

Rushforth R MM. Finding Your Dog’s Ecological “Pawprint”: A Hybrid EIO-LCA of Dog Food Manufacturing. En.: Arizona State University; 2013.

AC. B. Creature Companion. [Online].; 2015. [54–55]. Disponible en:

M.I. Municipalidad de Guayaquil. M.I. Municipalidad de Guayaquil. [Online].; 2022. Disponible en:

Wackernagel M RW. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers. 1998a.

Fu W TJZJDG. Ecological footprint (EF): An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Ecological Indicators. 2015;(48): 464–471.

Nutrition NRCCoA. Nutrient Requirements of Poultry. National Academies Press.

Bermingham EN TDMPHA. Energy requirements of adult cats. British Journal of Nutrition. 2010;(103): 1083–1093.

Linder DE FL. Evaluation of calorie density and feeding directions for commercially available diets designed for weight loss in dogs and cats. Journal of the American Veterinary Medical Association. 2010;(236): 74–77.

Fowler V FMCWWC. Energy requirements for the growing pig. Energy Metabolism: Proceedings of the Eighth Symposium of the European Association of Animal Production. 2013: 151–156 in Mount LE.

Bermingham EN TDCNMPBRGA. Energy requirements of adult dogs: A meta-analysis. PLOS ONE. 2014;(9).

Collier R BDTWILWC. Influences of environment and its modification on dairy animal health and production. Journal of Dairy Science. 1982;(65): 2213–2227.

Mullis RA WAPJ. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs. PeerJ. 2015;(3): e767.

Westhoek H RTvdBMJJNDRMSELJOOWG. The Protein Puzzle: The Consumption and Production of Meat, Dairy and Fish in the European Union. Netherlands Environmental Assessment Agency. 2011.

Durk Nijdam TRHW. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy. 2012; 37(6): 760-770.

L. S. The surprisingly large carbon paw print of your beloved pet. Salon. 2014.

AJ. G. The growing problem of obesity in dogs and cats. Journal of Nutrition. 2006;(136): 1940S–1946S.

Morrison R RJPVPEYP. A 6‐month observational study of changes in objectively measured physical activity during weight loss in dogs. Journal of Small Animal Practice. 2014;(55): 566–570.

PBL. Netherlands Environmental Assessment Agency (PBL). Agency NEA.

Knight A LM. Vegetarian versus meat-based diets for companion animals. Animals. 2016;(6): 57.

Cómo citar
Sáenz De Viteri Anzules, C., & Torres Lasso, P. (2022). La huella ecológica dietética de los animales domésticos en Guayaquil, Ecuador. FACSALUD-UNEMI, 6(11), 113-124.