Use of microsatellites in Rhodnius ecuadoriensis to determine population structure and migration patterns in Ecuador.

  • Juan Carlos Fernandez-Cadena UEES
  • Derly Madeliny Andrade-Molina Pontificia Universidad Católica de Chile

Abstract

Understanding the migratory behavior of triatominae (insects) between wild environments towards inhabited áreas is crucial for avoiding the spread of Chagas disease. The DNA based markers show an advantage in developing this phenomenon, specifically microsatellite-based markers, which were initially developed to study Rhodnius pallescens and subsequently proved to be effective in Rhodnius ecuadoriensis. Its analysis is not only consistent with the evolutionary origin of the clina pallescens- colombiensis- ecuadoriensis, but it also allows observing patterns of migration in R. ecuadoriensis within the provinces of Ecuador. Human migration is directly related to that of the insects, this movement can be seen in the homogeneity that exists between the bugs found in Loja with those located in Manabí.

Downloads

Download data is not yet available.

Author Biography

Juan Carlos Fernandez-Cadena, UEES
Docente Investigador

References

WHO. (2007) Reporte sobre la enfermedad de Chagas. TDR/SWG/09

Galvão C, Carcavallo R, Da Silva D, Jurberg J. A checklist of the current valid species of the subfamily Triatomina Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003; 202: 1-36.

Guhl F. Chagas disease in Andean Countries. Mem Inst Oswaldo Cruz, Rio de Janeiro.2007; 102 (4)

Soriano‐Arandes A, Angheben A, Serre‐Delcor N, Treviño‐Maruri B, Gomez J, Jackson Y. Control and management of congenital chagas disease in Europe and other non‐endemic countries: current policies and practices. Trop Med Int Health Journal. 2016:21(5) pag: 590-596. Rassi A Jr1, Rassi A, Marin-Neto JA.

Rassi A Jr, Rassi A, Marin-Neto J. Chagas disease. The Lancet. 2010: 75(9723): 1388-1402.

Abad-Franch F. Control de la Enfermedad de Chagas en el Ecuador. OPS/OMS-2002. Ministerio de Salud Pública del Ecuador.

Aguilar M, Abad-Franch F, Racines J, Paucar. Epidemiology of Chagas Disease in Ecuador. A Brief Review. Mem Inst Oswaldo Cruz. 1999; 94: Suppl. (I: 387-393)

Abad-Franch F, Pacar A, Carpio C, Cuba C, Aguilar M, Miles M. Biogeography of Triatominae (Hemiptera: Reduviidae) in Ecuador: Implications for the Design Control Strategies. Mem Inst Oswaldo Cruz. 2001; 96(5): 611-620

Guhl Felipe. Chagas disease in Andean countries. Mem. Inst. Oswaldo Cruz 2007 ; 102( Suppl 1 )

Aguilar M, Abad-Franch F, Racines J, A. Paucar Epidemiology of Chagas Disease in Ecuador. A Brief Review Mem Inst Oswaldo Cruz, Rio de Janeiro. 1999; 94(I): 387-393.

Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research. 1988; 16(3) :1215

De Merida A, Palmieri M, Yurrita M, Molina A, Molina E, Black W. Mitochondrial DNA variation among Anopheles albimanus populations Am. J. Trop. Med. Hyg. 1999; 61(2): 230 -239.

Maniatis T, Fritsch E, Sambrook J. Molecular clonig. A laboratory manual. Cold Spring Harbor Lab. (1982) Nueva York, E.UA.

Harry M, Poyet G, Romaña C. Solignac M. Isolation and characterization of microsatellite in the bloodsucking bug Rhodnius pallescens (Heteroptera, Reduviidae). Molecular Ecology.1998; 7:1784-1786.

Nei M, Kumar S. Molecular Evolution and Phylogenetics: Genetic Polymorphism and Evolution. United States: OXFORD. 2000; 231-333

Meirmans P, Van Tienderen P. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms, Molecular Ecology Notes 2004; 4(1):792-794.

Glaubitz J. CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes. 2004; 4:309-310.

Wei Guo S, Thompson E. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992; 48(2): 361-372.

Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of heredity. 1995; 86(6), 485-486.

Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 2005; 1:47-50.

Belkhir L, Raufaste N, Bonhomme F. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, (2004). Université de Montpellier II, Montpellier (France).

Chapuis M, Estoup A. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution. 2007; 24(3): 621–631.

Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155:945-959.

Carbajal de la Fuente A, Catalá S. Relationship between Antennal Sensilla Pattern and Habitat in Six Species of Triatominae. Mem Inst Oswaldo Cruz, Rio de Janeiro, 2002; 97(8): 1121-1125.

Cuba Cuba C, Vargas F, Roldan J, Ampuero C. Domestic Rhodnius ecuadoriensis (Hemiptera, Reduviidae) infestation in Northern Perú: A comparative trial of detection methods Turing a six-month follow up Rev. Inst. Med. Trop. S. Paulo 2003; 45(2):85-90.

Chávez J. Contribución al estudio de triatominos del Perú: Distribución geográfica, nomenclatura y notas taxonómicas. 2006; 55: 65-76

Fitzpatrick S, Feliciangeli M, Sanchez-Martin M, Monteiro F, Miles M. Molecular Genetics Reveal That Silvatic Rhodnius prolixus Do Colonise Rural Houses. PLOS Neglected Tropical Diseases. 2008; 2(4): 210.

Guhl F, Aguilera G, Pinto N, Vergara D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomédica. 2007; 27 (supl. 1): 143-62

Hartl D, Clark A. Principles of Population Genetics. 4 ed. Sinauer Associates, Inc, (2007). Sunderland, MA.

Gaunt M, Miles A. The ecotopos and evolution of triatominae bugs (Triatominae) and their associated Trypanosomes. Mem Inst Oswaldo Cruz. 2000; 95:557-565

Abad-Franch F, Aguilar H, Paucar C, Lorosa E, Noireau F. Observations on the Domestic Ecology of Rhodnius ecuadoriensis (Triatominae). Mem Inst Oswaldo Cruz, Rio de Janeiro. 2001; 97(2): 199-202.

Abad-Franch F. Control de la Enfermedad de Chagas en el Ecuador. (2002) OPS/OMS- Ministerio de Salud Pública del Ecuador.

Organización Panamericana de la Salud. Taller Técnico de Estudio sobre Rhodnius pallescens, su Vigilancia y Control. (2003). OPS/DPC/CD/273/03

Jaramillo N, Schofield C, Gorla D, Caro-Riaño H, Moreno J, Mejía E, Dujardin J. The role of Rhodnius pallescens as a vector of Chagas disease in Colombia and Panama. Research and Reviews in Parasitology. 2000; 60 (3-4): 75-82.

Panzera F, Ferrandis I, Ramsey J, Salazar-Schettino P, Cabrera M, Monroy C, Jaramillo, N. Genome size determination in Chagas disease transmitting bugs (Hemiptera-Triatominae) by flow cytometry. The American journal of tropical medicine and hygiene. 2007; 76(3), 516-521.

Villacís A, Marcet P, Yumiseva C, Dotson E, Tibayrenc M, Brenière S, Grijalva M. Pioneer study of population genetics of Rhodnius ecuadoriensis (Hemiptera: Reduviidae) from the central coastand southern Andean regions of Ecuador. Infection, Genetics and Evolution. 2017; 53:116-127.

Abad-Franch F, Palomeque F, Aguilar M, Miles A. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Tropical Medicine and International Health.2005; 10(12): 1258–1266.

Published
2019-02-08
How to Cite
Fernandez-Cadena, J. C., & Andrade-Molina, D. M. (2019). Use of microsatellites in Rhodnius ecuadoriensis to determine population structure and migration patterns in Ecuador. FACSALUD-UNEMI, 2(3), 7-16. https://doi.org/10.29076/issn.2602-8360vol2iss3.2018pp7-16p