Estratificación de un motor de inyección directa a gasolina al variar la altitud.//Stratification of a gasoline direct injection to vary altitude.

Palabras clave: inyección directa gasolina, Mazda cx-5, modo homogéneo, variación de altura

Resumen

En este artículo se desarrolla una metodología experimental con el objeto de determinar la estratificación de la mezcla aire- combustible que se produce en un motor de inyección directa a gasolina, que puede ser homogénea, homogénea pobre y estratificada. Al variar el nivel de altura geográfica en el vehículo de 0 a 4000 metros de altura con respecto al nivel del mar. Determinando cuáles son los parámetros que inciden directamente en la estratificación de la mezcla aire combustible conocidos como modo de trabajo, mediante el estudio del sistema GDI y la aplicación de una prueba experimental dinámica en base a normas y protocolos desarrolladas por la SAE. Utilizando un escáner automotriz de última generación y un GPS, aplicados a un vehículo MAZDA CX-5. Los resultados de las pruebas realizadas revelan cuando se producen los modos de trabajo homogéneo pobre, homogéneo y estratificado en las pruebas. Además, indican cómo influye la variación de la altura en la selección de estos modos de trabajo cada 500 metros de altura y muestran cómo se puede identificar cada modo de trabajo con el escáner mediante la línea de datos, y entender los cambios en el funcionamiento debido a la variación del modo de trabajo. AbstractIn this article an experimental methodology is developed in order to determine the stratification of the air-fuel mixture produced in a gasoline direct injection engine, which can be homogeneous, lean homogeneous and stratified. By varying the level of geographical height in the vehicle from 0 to 4000 meters above sea level. Determining which are the parameters that directly affect the stratification of the fuel air mixture known as working mode, through the study of the GDI system and the application of a dynamic experimental test based on standards and protocols developed by the SAE. Using an automotive scanner of last generation and a GPS, applied to a MAZDA CX-5 vehicle. The results of the tests carried out reveal when poor homogeneous, homogeneous and stratified working modes are produced in the tests. In addition, they show how height variation influences the selection of these working modes every 500 metres in height and show how each working mode can be identified with the scanner via the data line, and understand the changes in operation due to variation in working mode.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Julio Leguísamo-Milla, Universidad Internacional SEK del Ecuador
Julio César Leguísamo Milla se graduó de Ingeniero Mecánico Automotriz en la Escuela Politécnica del Ejercito sede Latacunga, Magister en Sistemas Automotrices de la Escuela Politécnica Nacional. Ha sido docente de la Universidad Tecnológica Equinoccial en la Facultad de Ingeniería Mecánica Automotriz por 6 años. En la actualidad es docente tiempo completo de la Universidad Internacional SEK del ecuador en la Facultad de Arquitectura e Ingeniería en pregrado y postgrado. En la actualidad está desarrollando proyectos de investigación sobre emisiones vehiculares y materiales y procesos para la industria automotriz.

Citas

Alagumalai, R. (2014). Internal combustion engines: Progress and prospects. Renewable and Sustainable Energy Reviews, 38, 561-571. doi: 10.1016/2014-06-014

An, Y., Teng, S., Li, X., Qin, J., Zhao, H., Gang, T., y Liu, B. (2016).Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism. SAE Technical Paper. doi: 10.4271/2016-01-0690

Chen, H., Gong, X., Liu, Q., y Hu, Y. (2013). Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines. Control Theory and Applications, 8(11), 948-959. doi: 10.1049/iet-cta.2013.0476

Costa, M., Catapano, F., Marseglia, G., y Sorge, U. (2015). Experimental and Numerical Investigation of the Effect of Split Injections on the Performance of a GDI Engine Under Lean Operation. SAE Technical Paper. doi: 10.4271/201524-2413

Costa, M., Marchitto, L., Merola, S., y Sorge, U. (2014). Study of mixture formation and early flame development in a research GDI engine through numerical simulation and UV-digital imaging. Energy, 77(1), 88-96. doi:10.1016/2014-04-114

Costagliola, M. (2013). Combustion efficiency and engine out emissions of SI engine fueled with alcohol/gasoline blends. Applied Energy,1(1), 1162-1171. doi:10.1016/2012-09-042

Dahl, D., Denbratt, I., y Koopmans, L. (2009). An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine. SAE Int. J. Engines, 1(1), 324-335. doi:10.4271/2008-01-0426

Doornbos, G., Hembal, G., y Dahl, D. (2015). Reduction of Fuel consumption and Engine-Out NOx Emissions in a Lean Homogeneus GDI Combustion System,Utilizing Valve Timing and an Advanced Ignition System. SAE Technical Paper, 8(3). doi: 10.4271/2015-01-0776

Gaeta, A., Fiengo, G., Palladino, A., y Giglio, V. ( December 2009). A control oriented model of a Common-Rail System for Gasoline Direct Injection Engine. Proceedings of the 48h IEEE Conference on Decision and Control (CDC). Shanghai, China.

Gu, X., Huang, Z., Cai, J., Gong, J., Wu, J., y Lee, F. (2012). Emission Characteristics of a Spark-Ignition Engine Fuelled With Gasoline-n-Butanol Blends in Combination With EGR, Fuel, 93, 611–617. doi: 10.1016/2011-11-040

Hanabusa, H., Kondo, T., Hashimoto, K., y Sono, H. (2013). Study on Homogeneous Lean Charge Spark Ignition Combustion. SAE Technical Paper. doi:10.4271/2013-01-2562

Huang, C., Yasari, E., Johansen, L., Hemdal, S., y Lipatnikov, U. (2016). Application of Flame Speed Closure Model to RANS Simulations of Stratified Turbulent Combustion in a Gasoline Direct-Injection Spark-Ignition. Combustion Science and Technology, 188(1), 98-131. doi: 10.1080/00102202.2015.1083988

Jiao, Q., y Reitz, R. (2015). The Effect of Operating Parameters on Soot Emissions in GDI Engines. SAE Int. J. Engines 8(3), 1322-1333. doi:10.4271/2015-01-1071

Kar, T., y Agarwal, AK. (2015). Development of a single culinder CNG direct injection engine and its performance, emission and combustion characteristics. Int. J. Oil, Gas and Coal Technology, 10(2), 204-220. Recuperado de

https://www.inderscienceonline.com/doi/abs/10.1504/IJOGCT.2015.070839

Karwa, N., Stephan, P., Wiese, D., y Lejsek, D. (December 2014). Gasoline direct injection engine tip drying. 19th Australian Fluid Mechanics Conference. Melbourne, Australia.

Kawasumi, Y., Yasui, Y., y Higashitani, H. ( June 2006). Cooperated Control of Multi Stage Injection System for Direct Injection Gasoline Engine. American Control Conference. Minneapolis, MN, USA

Lapuerta, M., Armas, O., Agudelo, J y Sánchez, C. (2006). Estudio del Efecto de la Altitud sobre el Comportamiento de Motores de Combustión Interna. Parte 1: Funcionamiento. Información Tecnológica, 17 (5), 21-30. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=2196209

Li, Y., y Dexin, L.( March 2011). Study on the HC Emissions During Cold-Start Conditions of Gasoline Direct Injection Engine. 4th International Conference on Intelligent Computation Thecnology and Automation. Shenzhen, Guangdong, China.

Liu, Q. ( June 2013). Active Disturbance Rej ection Control of Common Rail Pressure for Gasoline Direct Injection Engine. American Control Conference. Washington, DC, USA.

Lopez, J. (2012). Análisis y Estudio de Sistemas de Aumento de Rendimiento y Reducción de Emisiones en Motores Alternativos de Combustión Interna (tesis pregrado). Universidad Zaragoza, Zaragoza, España.

Mazda Motor Corporation. (2013). Workshop Manual Engine CX-5. USA.

Mazda Motor Corporation. (2012). MAZDA CX-5 Manual Service. USA.

Merola, S., Tornatore, C., y Irimescu, A. (2016). Cycle-resolved visualization of pre-ignition and abnormal combustion phenomena in a GDI engine. Energy Conversion and Management 127(1), 380-391. doi: 10.1016/2016.-09-035

Montanaro, A., Allocca, L., Lazzaro, M., y Meccariello, G. (2016). Impinging Jets of Fuel on a Heated Surface: Effect of Wall Temperature and Injection Conditions. SAE Techical Paper 8(63). doi:10.4271/2016-01-0863

Montanaro, A., Malaguti, S., y Alfuso, S. (2012). Wall Impingement Process of a Multi-Hole GDI Spray: Experimental and Numerical Investigation. SAE Technical Paper. doi:10.4271/2012-01-1266

Niculae, M., Ivan, F., y Neacsu, D. (February 2017). About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results. IOP Conf. Series: Materials Science and Engineering. Arges, Romania

Piazzullo, D., Costa, M., Allocca, L., y Montanaro, A. (2017). A 3D CFD Simulation of GDI Sprays Accounting for Heat Transfer Effects on Wallfilm Formation. SAE Int. J. Engines 10(4), doi: 10.4271/2017-24-0041

Polat, S., Uyumaz, A., Solmaz, H., Yilmaz, E., Togo, T., Y Yücesu, S. (2014). Numerical Study on the Effects of EGR and Spark timing to Combustion Characteristics and NOx Emission of a GDI Engine. International Journal of Green Energy, 13 (1), 63-70. doi: 10.1080/15435075.2014.909361

Portilla, A, & Caiza, P. (2010).Determinación de la influencia de la altura en emisiones contaminantes de un vehículo con motor ciclo Otto de inyección electrónica de gasolina (tesis maestría). Escuela Politécnica Nacional, Quito, Ecuador.

Robles, L, & Martínez, J. (2010). Estudio del comportamiento de las variables de un motor de inyección electrónica respecto a la altura sobre el nivel del mar (tesis maestría). Escuela Politécnica Nacional, Quito, Ecuador.

Rodríguez, J., y Cheng, K. (2016). Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine.” SAE Int. J. Engines, 9(2). Recuperado de http://hdl.handle.net/1721.1/102389

Saw, O., y Mallikarjuna, J. (2017). Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis. IOP Conf. Ser.: Mater. Sci. Eng. 243(1). doi:10.1088/1757-899X/243/1/012025

Schulz, F.m Schmidt, J., Kufferath,A., y Samenfink, W. (2014). Gasoline Wall Films and Spray/Wall Interaction Analyzed by Infrared Thermography. SAE Int. J. Engines 7 (3) 1165-1177 doi:10.4271/2014-01-1446

Seong, H., Choi, S., y Lee, K. (2014). Examination of Nanoparticles from Gasoline Direct-Injection (GDI) Engines Using Transmission Electron Microscopy (TEM). International Journal of Automotive Technology. 15(2), 175-181. Recuperado de https://link.springer.com/article/10.1007/s12239-014-0019-5

Society of Automotive Engineers. (2002). SAE J 1979: /E Diagnostics Test Modes. Recuperado de https://www.sae.org/standards/content/j1979_201202/

Society of Automotive Engineers. (2008). Fuel Economy Measurement Road Test Procedure. SAE J 1082:2008. Recuperado de https://www.sae.org/standards/content/j1082_200802/

Suarez, M. (2012). Interaprendizaje de Probabilidades y Estadística Inferencial con Excel Winstast y Graph. Recuperado de http://repositorio.utn.edu.ec/bitstream/123456789/940/1/Interaprendizaje%20de%20Probabilidades%20y%20Estad%C3%ADstica%20Inferencial%20con%20Excel,%20Winstats%20y%20Graph.pdf

Wang, B., Yizhou, J., Badawy, T., y Xu, H. (2017). Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors. Applied Energy. 204, 1215-1224 doi: 10.1016/j.apenergy.2017.03.094

Publicado
2019-05-16
Cómo citar
Leguísamo-Milla, J., Celi-Ortega, S., Llanes-Cedeño, E., & Rocha-Hoyos, J. (2019). Estratificación de un motor de inyección directa a gasolina al variar la altitud.//Stratification of a gasoline direct injection to vary altitude. CIENCIA UNEMI, 12(30), 46-56. https://doi.org/10.29076/issn.2528-7737vol12iss30.2019pp46-56p
Sección
Artículos Científicos