Evaluation of waste extracts of grapefruit (Citrus paradisi) as a bioactive substance for the formulation of a disinfectant for fresh foods

Keywords: grapefruit, Citrus paradisi, antimicrobial

Abstract

The search for natural antimicrobials that can be used as disinfection products for fresh fruits and vegetables is a necessity for consumers and the minimally processed food industry. In Ecuador, products are used for this purpose whose raw materials are imported, for this reason it was proposed to evaluate a bioactive substance from the waste of the national grapefruit production. The seeds, albedo (mesocarp) and peel (exocarp) were were subjected to extraction processes by Soxhlet, using ethanol as solvent. For each extract, its antimicrobial activity was evaluated by the modified Kirby-Bauer diffusion method (wells) against different pathogens: Pseudomona aeruginosa, Staphylococcus aureus, Escherichia coli and Rhizopus stoleiner. The albedo and shell extracts showed antibacterial activity against E. coli and S. aureus, while the seed extract showed no sensitivity against any of the micro-organisms, at the concentration tested. Based on these results, different mixtures of the bioactive extracts were prepared, maintaining antibacterial activity and achieving antifungal activity against R. stoleiner. The latter result was superior to that obtained for the evaluation of a commercial product with grapefruit seed active ingredient.

Downloads

Download data is not yet available.

References

Aadil, R.M., Xin-An, Z., Zhong, H. & Da-Wen, S. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, Volume 141, Issue 3, Pages 3201-3206. https://doi.org/10.1016/j.foodchem.2013.06.008.

Badawy, M. E. I., & Abdelgaleil, S. A. M. (2014). Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Industrial Crops and Products, 52, 776-782. https://doi.org/10.1016/j.indcrop.2013.12.003

Caccioni, D. R. L., Guizzardi, M., Biondi, D. M., Agatino Renda, & Ruberto, G. (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology, 43(1), 73-79

Costa, M.G., Fonteles, T.V., De Jesus, A., Almeida, F., De Miranda M., Fernandes F. & Rodrigues, S. (2013). Food Bioprocess Technol 6: 997. https://doi.org/10.1007/s11947-011-0746-9

Cristóbal-Luna, J. M., Álvarez-González, I., Madrigal-Bujaidar, E., & Chamorro-Cevallos, G. (2018). Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food and Chemical Toxicology, 112, 224-234. https://doi.org/10.1016/j.fct.2017.12.038

Cushnie T.P. & Lamb J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents. Volume 26, Issue 5, Pages 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.

Duccio, R.L., Guizzardi, M., Biondi, D., Renda, A. & Ruberto, G. (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology Volume 43, Issues 1–2, Pages 73-79. https://doi.org/10.1016/S0168-1605(98)00099-3

Flamini, G., & Cioni, P. L. (2010). Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chemistry, 120(4), 984-992. https://doi.org/10.1016/j.foodchem.2009.11.037

Galanakis, C.M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, Volume 26, Issue 2, Pages 68-87. https://doi.org/10.1016/j.tifs.2012.03.003.

Ganzera, M., Aberham, A., & Stuppner, H. (2006). Development and Validation of an HPLC / UV / MS Method for Simultaneous Determination of 18 Preservatives in Grapefruit Seed Extract. Journal of Agricultural and Food Chemistry, 54, 3768–3772

Garcia-Castello, E.M., Rodriguez-Lopez, A.D., Mayor, L., Ballesteros, R., Conidi, C. & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT - Food Science and Technology, Volume 64, Issue 2, Pages 1114-1122. https://doi.org/10.1016/j.lwt.2015.07.024.

Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289-299. https://doi.org/10.1016/j.foodchem.2019.05.136

Karaman E., Yılmaz E., & Tuncel N. B., (2017). Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioactive Carbohydrates and Dietary Fibre, 11, 9-17, https://doi.org/10.1016/j.bcdf.2017.06.001.

Kuete, V., Ngameni, B., Simo, C.C.F., Tankeu, R.K., Ngadjui, B.T., Meyer, J.J.M., Lall, N. & Kuiate, J.R. (2006). Actividad antimicrobiana de los extractos crudos y compuestos de Ficus chlamydocarpa y Ficus cordata (Moraceae) J Ethnopharmacol; 120 17–24. http://dx.doi.org/10.1016 / j.jep.2008.07.026

Kumar, K., Narayani, M., Subanthini, A. & Jayakumar M. (2011). Antimicrobial Activity and Phytochemical Analysis of Citrus Fruit Peels -Utilization of Fruit Waste. International Journal of Engineering Science and Technology. 3. 5414-5421

Londoño-Londoño, J., Rodrigues, V., Lara, O., Gil, A., Crecsynski, T., Arango, G., Ramirez, J.R. (2010). Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry, Volume 119, Issue 1, Pages 81-87. https://doi.org/10.1016/j.foodchem.2009.05.075.

Ng, T. B., El-Din Ahmed Bekhit, A., Fang, E. F., Li, X., Lu, Q., Guo, H., & Wong, J. H. (2015). Grapefruit (Citrus paradisii) oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 463–470). https://doi.org/10.1016/B978-0-12-416641-7.00052-3

Ochoa-Velasco, C. E., Salcedo-Pedraza, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. A. (2018). Use of microbial models to evaluate the effect of UV-C light and trans-cinnamaldehyde on the native microbial load of grapefruit (Citrus × paradisi) juice. International Journal of Food Microbiology, 282, 35-41. https://doi.org/10.1016/j.ijfoodmicro.2018.05.023

Okunowo, W., Oyedeji, O., Afolabi, L. and Matanmi, E. (2013). Essential Oil of Grape Fruit (Citrus paradisi) Peels and Its Antimicrobial Activities. American Journal of Plant Sciences, Vol. 4 No. 7B, pp. 1-9. doi: 10.4236/ajps.2013.47A2001.

Ortuño, A., Báidez, A., Gómez, P., Arcas, M.C., Porras, I., García-Lidón, A. & Del Río, J.A. (2006). Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chemistry, Volume 98, Issue 2, Pages 351-358. https://doi.org/10.1016/j.foodchem.2005.06.017.

Rawson, A., Tiwari, B.K., Patras, A., Brunton, N., Brennan, C., Cullen, P.J. & O'Donnell C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, Volume 44, Issue 5, Pages 1168-1173. https://doi.org/10.1016/j.foodres.2010.07.005

Ren, J.-N., Tai, Y.-N., Dong, M., Shao, J.-H., Yang, S.-Z., Pan, S.-Y., & Fan, G. (2015). Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry, 185, 25-32. https://doi.org/10.1016/j.foodchem.2015.03.142

Roller, S. y Seedhar, P. (2002) El carvacrol y el ácido cinámico inhiben el crecimiento microbiano en melones y kiwis recién cortados a 4 ° C y 8 ° C. Cartas en Microbiología Aplicada, 35, 390-394. http://dx.doi.org/10.1046/j.1472-765X.2002.01209.x

Sawamura, M. (2005). Volatile constituents of Redblush grape fruit (Citrus paradise) and pummelo (Citrus grandis) peel essential oil from Kenya. Journal of Agricultural and Food Chemistry, 25(53), 9790–9794.

Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 34, 29-46. https://doi.org/10.1016/j.nut.2016.09.006

Toribio, M.S., Oriani D.S. y Skliar M.I. (2004). “Actividad antimicrobiana de Centaurea calcitrapa”. Ars Pharmaceutica, 45(4): 335-341.

United States Department of Agriculture (2016). National agricultural statistics service. Recuperado de:http://www.usda.gov/ and http://www.nass.usda.gov/

Wang, L. F., & Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT - Food Science and Technology, 74, 338–345. https://doi.org/10.1016/j.lwt.2016.07.066

Wei-Lun, H., Hyuk, J. & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, Volume 25, Issue 1, Pages 71-83, https://doi.org/10.1016/j.jfda.2016.11.008.

Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018). Valorisation of citrus processing waste: A review. Waste Management, 80, 252-273. https://doi.org/10.1016/j.wasman.2018.09.024

Published
2020-09-11
How to Cite
Bello-Alarcón, A., Monsalve-Paredes, M., & Carrillo-Tomalá, C. (2020). Evaluation of waste extracts of grapefruit (Citrus paradisi) as a bioactive substance for the formulation of a disinfectant for fresh foods. Science Magazine Unemi, 13(34), 28-33. https://doi.org/10.29076/issn.2528-7737vol13iss34.2020pp28-33p
Section
Artículos Científicos